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ABSTRACT 

The  purpose  of this report  is   to discuss  the  system of  a  statistical 
theory of  turbulence in general  cases  from isotropic   turbulence to turbu- 
lent boundary  layer.     In the first   three chapters, mathematical  formu- 
lations  are  given  to  the Euler correlation or  the Reynolds  stress, 
according  to  a basic physical  picture of vortex chaos motion  in which 
many kinds  of vortices are  carried  along  t^e flow  in agitating  situations. 
When  the  formula   Is combined with   the Reynolds  equations,   quantitative 
discussions  are  developed by dividing  the cases  Into  two  fundamental 
groups  of wake or  jet flow  in Chapters Four  through    Seven and  of boundary 
layer or pipe  flow  in Chapters  Eight and Nine. 
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PREFACE 

In a  flow of  air  or water,   turbulent   flow  is usally  found   behind   a 
grid  or  single body,   in  a  pipe,   along  a wall,   or   in flow  ejected   from  a 
nozzle.     If an appropriate  solution  for   these  complicated  states  of   flow 
can be derived  from   the  nonsteady Navier-Stokes  equations,   the  study  of 
turbulent  flow can  be   included  in  the  hydrodynamics of a  viscous   fluid 
like  the  theory  of   laminar  boundary   layers.     As   a matter  of  fact,   one   is 
obliged  to discuss  only  statistical  characteristics depending upon  the 
Reynolds  equations   derived  by  taking  time means  of  the Navier-Stokes   equa- 
tions,   because  it   is   extremely difficult   to make  a mathematical   analysis 
of   the  latter  equations   by  giving initial   and  boundary conditions.      It   is 
well   known,   however,   that   since  the  Reynolds  equations  are not  mathemati- 
cally  conclusive,   they  cannot be regarded  as  necessary and  sufficient 
theoretical  grounds   for   the general  phenomena  of  turbulent  flow. 

Previous   studies  of   turbulent  flow  are  generally divided   into  two 
groups.     One  is  the  experimental   investigation of  the physical  character- 
istics,   especially  of  the microstructure  of   turbulent  flow,   and   the  other 
is   a   theoretical   anticipation of  the  statistical   quantities  of   flcv.     The 
statistical  theory of  the   isotropic   turbulence  for a  turbulent  wake  behind 
a   grid,   the  transfer   theory  for a  turbulent   shear  flow,   and  other   theories 
are   included  in  the   latter  category.     In  this  category of  study,   the 
problem is  to make   the Reynolds equations be conclusive for  the  referring 
turbulent phenomena   by  introducing appropriate mathematical   expressions 
of   some other  assumptions   on  statistical  properties of  the  turbulent   flow. 
Irrespective of  the   successful  aspects  of  existing theories   in  their  own 
regions,   they  surely have  no common  foundation  such as  a  general   theory of 
turbulence.     Viewed   as  a   turbulent phenomenon,   the difference of  the 
turbulent wake behind  a  grid and a single body  is not conspicuous;   but  the 
scope of each  theory  for   these cases  cannot  extend  to the others.     Further- 
more,  modern experimental   techniques  have  revealed many properties  of   tur- 
bulent  flow which  are beyond  the scope of existing theories. 

The intention  of  the   author,   after making  some studies  on  fully- 
developed  turbulent  flows,   is to propose a unified  statistical   theory  tor 
a  general  case of  turbulent  flow.     According to  this  intention,   it  is 
initially important  to affirm a physical  picture of the structure  of  gen- 
eral   turbulent  states  of  flow and not  to make a phenomenological   idealiza- 
tion of a special  case of   flow such as  isotropic   turbulence or  turbulent 
shear  flow.    When  the  fundamental physical  picture  is made concrete,   these 
mathematical  formulas must be derived which will  permit  the inclusion of 
the  Reynolds  equations.     Through this method,   it may be possible  to clarify 
the meaning of  the  basic  assumptions  of  the  previous  theories  and  to  extend 
their  scope to a nontheorlzed field of the statistical properties.     In 
order  to develop practical   studies of engineering,   it is necessary  to  start 
with  an investigation of  the basic  foundations  of  a general   theory of 
turbulence. 



Although many of   the  author's  works  have  already been  published,   the 
purpose of  these  papers  has been to  present   the originality  of  the   inves- 

, tigator.     The  form of  an ordinary paper was   found  to be  unsuitable   for the 
purpose of presenting  the  primary aim of  the  author.     Therefore,   by making 

* the interrelations  clear  in the  original works  and other  existing  theories, 
the discussions will be projected  into  a  theoretical  system  in this  report. 

An attempt  of  this  description   is  different  from a  display  of  only 
the original works  of   the  author,   and   at  the   same  time,   it  must  not be a 
historically arranged  review of  the  previously proposed   studies.     Like a 
theory of mathematics,   systemization  should  be given  to  quantitative 
interpretations  of  the   statistical   properties  of general   phenomena   of 
turbulent  flow.      In this  report,   the   turbulent  flow  shall  be   first  class- 
ified  into  groups   depending upon  the  basic  physical  picture,   and  mathe- 
matical   idealizations   shall  be presented   for   these groups.      In proceeding 
with  the descriptions,   theoretical  deductions   from the  idealized mathe- 
matical  expression must  clearly be  distinguished  from physical   interpre- 
tations  of  the  natural   phenomena   themselves.     Thus,   the words   "turbulence" 
and  "turbulent   flow" shall  be used  here   for   the  idealized   image  and   the 
natural  phenomena  of  turbulent  flow,   respectively;   and  the  description is 
limited   to  show  only  the  structure  of  a   system of the  general   theory of 
turbulence.     It   is  desirable  to  rely  upon other  excellent   reference  books 
and reviews  in periodicals  for  the  precise  phenomenological   discussions 
in individual   cases. 

Once the  phenomena   are  idealized   into mathematical   formulations, 
quantitative results must be drived,   at   least  in principle,   through mathe- 
matical  analyses.     At  present,  however,   not   all   the  statistical  quantities 
of turbulent  flow  can be  evaluated  because of an insufficiency of   the 
study of the physical  conditions  and mathematical  treatments.     This  is 
especially  true   for  the  case of  the  vortex motion.     However,   less  difficult 
mathematical  analyses   shall be advanced   according to   the  system of  the 
theory,   and  their   results  shall  be checked  by  experimental   evidences.     The 
description will   attempt  to clarify   the meaning of basic   assumptions of 
the previously  proposed   successful   theories,   to give quantitative   inter- 
pretations   to  uncomplicated observed   statistical  properties which   are 
unattainable by  these previous  theories,   and   to anticipate  some useful 
results  for engineering problems. 

In Chapters  One through Three,   basic  formulations are made on statis- 
tical quantities  of  turbulence  in a  general  case after  relating the  prin- 
cipal   features   of   the  turbulent  flow.      In Chapters Four  through Nine,   the 
basic  formulations  are  developed  to  give  quantitative discussions   of  two 
essentially different  kinds:     turbulent wake  or  jet with  a  decaying  feature 
along  the  flow, and   turbulent  flow along  a wall with a nondecaying  feature. 
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x, y» z 

t 

u. v, W 

SYMBOLS 

Cartesian coordinates in  the  field of  flow 

time 

velocity components of the x,  y,   and z  direction,   respec- 
tively 

P static  pressure 

yOc coefficient  of molecular viscosity 

}) coefficient  of kinematic  viscosity 

u,  v,  w fluctuating velocity components  of  the  x, y,  and z direction, 
respectively 

A a fixed  point  in  the field of  flow 

V* a turning velocity  at the A-point  owing  to a vortex motion 
nearby in which curvature,  elongation of  the filament,   and 
the  effects   of other vortices  are  neglected 

r,   6,  <i> Independent variables to designate  the   location and 
orientation of  the V* vector  referring  to  the vortex center 
in  the  field of  flow, which,   at  the  same  time,   represent 
the coordinates of A*-point  in the  D*-domain 

x*,  y*,   z*        Cartesian coordinates of an ideal   space  in which the 
variation of  the V* vector  for  the  time  is represented 

A* a point  in  the x*y*z*-space whose   position of the coordi- 
nates r,  9,   «<    corresponds  to  the  situation of V* vector  in 
the   field of   fxow 

D* a domain in  the x*y*z*-space  in which  the movement of  the 
A*-point  is   included 

Q* volume of  the  D*-domain 

t* time interval in which the A*-point moves around from end 
to end on a boundary of the D*-domain 

A t excess time interval in which vortices are not in the 
nearest location to the A-point in the field of flow during 
the time interval t* of the A*-point 



p* 

p* 

p 
N 

a probability density function to represent the movement 
of the A*-point in the D*-domain in the x*y*z*-space 

integrated value of P* in the D*-domain 

vorticity 

circulation 

number of the kind of vortex motions 

Subscripts 

OL type of vortex motion designated by the solutions of a two- 
dimensional viscous vortex 

i an i-th kind of vortices in the vortex chaos motion con- 
sisted of N kinds of vortices 

o origin of a reference position and time in the system of 
x, y, z,   and t 

1 t 
— time means ("litn—idt) 

* values referring to another point in the field of flow 
besides the A-pcint 

x, y, z, yz, zx, xy 

designation of  the respective component 
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In  the molecular motion of a gas,   the dimensions of molecules   are  neglected 
and  their motion can be  taken as   that  of  a  system of particles.     However, 
the turbulent motion  is different  in this  situation,   yet theoretical  or 
experimental  evidence  cannot be   found  that  the Navler-Stokes   equations do 
not hold  in such a nonsteady motion of  turbulent flow.     At present,   it  is 
extremely difficult  to  solve these equations mathematically and  to get the 
solution as  a  function of  location and   time  under appropriate  physical 
conditions  accompanying  the  real   state  of complicated   turbulent  flow. 
Fortunately,   the  turbulent  flow has definite mean values of  intensity and 
scale.     So,   for  all  practical purposes,   it  is  sufficient  to know  the mean 
values  for  time  as  functions of  a  location  in  the  field  of  flow,   even if 
an  Instantaneous   state  of flow cannot be  found.     Thus,   the  study of  turbu- 
lent flow has been developed exclusively  from this  statistical  point  of 
view. 

2.     HISTORICAL NOTES OF THE STUDY OF TURBULENT FLOW 

Since ancient days,   people must have  seen many turbulent   states  of 
flow in the current of  a brook or  in the  rising smoke  of a  fire,   but  the 
beginning of  the  study of this problem is not  so old.     In the posthumous 
manuscripts  of Leonardo da Vinci  at  the  beginning of  the  sixteenth 
century,   some  sketches  can be found of   flow drawn clearly with  a  recog- 
nition of  turbulent phenomena.     Since  the  eighteenth century,   papers  of 
the  study of  turbulent   flow have  been proposed  from the  engineering point 
of  view.     In these papers  the names of  Hagen,   Bousslnesq and  others  can 
be  found. 

It was  Osborne Reynolds who  opened   the way  to  the  statistical   study 
of  turbulent  flow.     His  early paper   (reference  3)   is  concerned with  the 
production of  turbulent   flow.     By precisely  observing many cases  of  flow 
of water  in a  tube,   he   found  that  a certain number,  presently  called   the 
Reynolds  number,   attained  a constant value when the  laminar  state broke 
into a turbulent  state.     He tried   to explain  the  transition phenomenon 
as  being dependent on  the  increase of energy of the  fluctuating velocity 
contained  in part  of  the   fluid.     The study of  transition was  developed  into 
a  survey of the  stability of a given simple harmonic  velocity  fluctuation 
in  flow where  a   linearized nonsteady Navler-Stokes equation was  solved. 
This  stability  theory was  proved  first  by Taylor   (reference 4)   to be 
appropriate  in  the  case  of flow between  two circulating cylinders.     The 
evaluated  results  by Tollmlen  (reference  5)   and others   in the  case  of  a 
laminar boundary  layer  along a  flat plate were  also ascertained  by  experi- 
mental observation by Schubauer   (reference  6)   and others.     However,   the 
stability  theory  is concerned with only  the  laminar velocity  fluctuation 
and  does  not  treat  the  problem of  the production of  turbulent   flow.     On 
the  other hand,   Taylor   (reference  7) proposed  that  the  turbulent  flow 
might be promoted  by an  instantaneous  separation of  the  laminar  boundary 
layer,  and he  then proceeded with  a mathematical  analysis.     However,   the 
mechanism of  transition  from laminar  to  turbulent flow  is not  yet com- 
pletely clarified. 



From the breakdown of laminar to  the development of regular  turbulent 
flow,   some distance along the  flow is  necessary.     As  for  the  fully devel- 
oped  turbulent  flow,   Reynolds   (reference 8)  derived   the equations  of motion 
for  the  time means  from the Navier-Stokes  equations.     In deriving  the 
equations,   he proved   the  existence of  stress  forces  due  to  the nonlinear 
terms  In  the Navier-Stokes equations.     Reynolds  equations hold  in  every 
kini of flow having velocity fluctuations,   if  the velocity  fluctuations 
have only definite mean values   for  time.     As mentioned  in Section  1,   this 
condition holds   in  the  actual   state of  turbulent flow.     Thus,   the Reynolds 
equations  become  basic  necessary conditions   in  surveying mean  values  of 
velocity  fluctuation  of  turbulent  flow.     The  establishment of  these equa- 
tions  is  fundamentally the most  important  contribution in all   the  statis- 
tical  studies of  turbulent flow up to  the present time.     The  Reynolds 
equations  are not  as  critical  as  the Navier-Stokes equations,   because  the 
former  treat only  the  value of  time means.     Moreover,   because  of  the exis- 
tence of  the Reynolds   stress due  to the  nonlinear terms  in the  latter 
equations,   the Reynolds  equations have  become  inconclusive.     In other 
words,   the Reynolds  equations are not necessary and  sufficient conditions 
to prescribe  the   statistical quantities  of  turbulent  flow,   and cannot be 
regarded  as  the  unique  theoretical base   in  the  statistical  study.     In 
addition to  the Reynolds  equations,   some  other  foundations  are necessary 
to  proceed with  a   statistical  analysis  of  turbulent flow. 

Since  the Reynolds  equations were  established,   the study of  turbulent 
flow has been developed  generally  through  two  stages.     In the   first  stage, 
mean-velocity distributions of  so-called  shear  turbulent  flow  of wakes  or 
jets were  studied,   especially from the  practical point of view.     Existence 
of  the Reynolds   shearing stress  due to  turbulent agitating motion means 
the  transportation of momentum contained   in  a  part of  fluid  across   the 
mean direction of  flow.     Whatever physical   supposition may be given to the 
mechanism of turbulent  flow,  this phenomenologlcal character  is always a 
fact.     Thus,   depending upon the  transfer  theory of gas  in statistical 
dynamics,   some attempts were made  to clarify  the meaning of the mixing 
length  in  the case of  turbulent  shear  flow.     As  the scale length of 
turbulent  flow,   Taylor   (reference 9)   Introduced  the correlation for  time 
of velocity  fluctuation at a  fixed point:     the Lagrange correlation. 
Prandtl   (reference  10)   proposed  a new concept of the mixing length which 
is adaptable to the  turbulent shear flow of a continuous medium of fluid. 
With  the introduction of Prandtl's mixing  length,   the momentum and  vortic- 
ity  transfer  theories were developed respectively by PrandtL (reference 10) 
and  Taylor   (reference  11),   and an Improvement was made by Karmfin  (reference 
12)   to the concept  of the mixing  length.     Their theoretical results on the 
mean-velocity distribution or the  surface  friction in shear  turbulent 
flow were checked   experimentally by the  Pitot-tube technique,  which was 
the  unique  experimental  method of  turbulent  flow at that  time.     Recently, 
it has been prevalent  to make an  assumption on the distribution of   the 
coefficient  of Reynolds   shearing  stress   instead  of the mixing  length.     In 
a word,   the  feature of  the   transfer  theory  is   to postulate a  relation 
between the Reynolds  shearing stress and   the mean velocity by using  the 
mixing length  or  the  shearing-stress coefficient,  and  to make   the Reynolds 



equations conclusive for the mean-velocity distribution.  Although definite 
interpretations are not given to the basic postulations, these phenotneno- 
logical transfer theories are still making important contributions to 
engineering problems. 

The second stage of the study of turbulent flow was opened by Taylor 
(reference 13).  He introduced the concept of the correlation of velocity 
fluctuations at two points at the same time:  the Euler correlation.  He 
also defined the Isotropie turbulence, in which components of mean values 
of velocity fluctuation at a point are assumed invariant even if the coor- 
dinate axes are rotated or reflected.  Karmin and Howarth (reference 14) 
derived the fundamental equations of motion of this flow by using the 
Euler correlation.  The tensor formula of the Euler correlation coeffi- 
cients contains the expression of the Reynolds stress and is regarded as 
the general expression of the two fundamental quantities of the scale and 
intensity of turbulent flow.  In Isotropie turbulence, the Reynolds equa- 
tions are reduced to a simple formula, and it becomes possible to survey 
the decay of turbulent intensity or the spreading of turbulent scale along 
the flow somewhat theoretically.  These results could be checked experi- 
mentally by the hot-wire technique completed by Drydsn (reference 15) at 
that time.  Then the locally Isotropie turbulence was defined by 
Kolmogoroff (reference 16) , whose concept was to postulate the Isotropie 
character defined by Taylor in only a small part of the fluid motion, 
even if it did not hold for the whole field of flow.  The characteristic 
of local isotropy was confirmed experimentally in the high-frequency 
region of the velocity fluctuations in many cases of shear turbulent flow. 
Since then, studies have been developed into surveys of the spectrum 
function of velocity fluctuation of the Isotropie or locally Isotropie 
turbulence.  In fundamental principle, however, the equations of motion 
in these cases do not differ from the Reynolds equations, and in order to 
solve the equation mathematically, some other physical hypotheses must be 
introduced.  As one hypothesis, the concept of the similarity preservation 
has often been adapted, which postulates the invariance of some mean char- 
acteristics of velocity fluctuations along the direction of flow.  Simi- 
larity preservation has also been widely assumed in the case of the trans- 
fer theory.  Therefore, this hypothesis has been regarded as an important 
foundation of the study in addition to the Reynolds equations.  It may 
be said that in the second "tage the way was first opened to study the 
mechanism of the velocity fluctuation itself both theoretically and 
experimentally. 

3,  DEVELOPMENT OF STATISTICAL STUDIES IN PHYSICS 

The object of all studies of turbulent flow is to determine mean 
values for time of velocity fluctuation as a function of location in the 
field of flow.  According to this interpretation, they may be called 
statistical studies.  Statistical studies, however, have been developed 
chiefly in the field of physics where they had been used for a considerable 
period prior to the beginning of the study of turbulent flow.  It may be 



worthwhile   to   review   the   general   features   of   these  statistical   studies 
before  relating  our   plan   for  developing   the  previous   studies   of   turbulent 
flow. 

Statistical   study   in  physics,   presently  called   statistical   dynamics, 
began with   the  characteristics  of  gas.      Statistical   dynamics   are  based     pon 
the   following   fundamental   interpretation  of  a   molecular  chaos  motion; 
namely,   gas   is   considered   to  consist   of many  molecules,   each   of whicl    is 
moving at   random  in   space  and  colliding with  others.     When molecules   :ie 
regarded as particles, the  Newton  dynamics   of  a   system of  particles   becomes 
the   necessary   and   sufficient  principle   for  deriving quantitative   results. 
From  a mathematical   point   of  view,   however,   it   is   extremely   difficult   to 
derive  an  exact   solution   related   to  an   instantaneous   state   of   the  particles 
in   their  chaotic  motion.      It may  be  analogous   to  an  attempt   to   solve   the 
Navier-Stokes   equations   exactly  in   the  case  of   a   turbulent   flow.     As   is 
well   known,   even   the   three-body  problem   that   treats   the  motion  of  three 
particles  under   an   arbitrary  condition   is   not   yet  completely   solved.      Thus, 
it   is   sufficient   to   know  only   the mean   states   of   the  molecules   for  time. 
In   fact,   it  has  been  observed   that,   under   ordinary  temperature   and  pressure 
of   gas,   the  mean-molecular   velocity  and   the mean-free  path  have   the   orders 
of   10^ meters   per   second   and   lO--5  centimeters,   respectively.      The mean- 
free  path   is   very   small   compared with   a  macroscopic   standard   length. 

The mathematical   formula   for   the   equation  of motion  of   a   system  of 
particles   is   not   as   complicated   as   the   Navier-Stokes   equations;   therefore, 
the   equation  of  dynamics   can give   some   definite   results,   even   if   the   time 
means  are  taken.     At   first,   the Boyle-Charles   law of a gas  in   the  equilib- 
rium  state  could  be   proved   by  attributing   the   temperature  of  gas   in   the 
macroscopic   state   to   the   kinetic   energy  of  molecular  chaos  motion.     As   is 
well   known,   the  Newton  dynamics  proves   energy   conservation,   which  cannot 
be   altered  even  if   the   time means  are   taken.     Thus,   according  to   the 
dynamics,   this   equation  can  give  definite   interpretations   to   the   first   law 
of   thermodynamics   and   to  many other  phenomenological   laws       In  a word,   the 
intent  of   statistical   dynamics  at   the   first   stage was   to  discuss   the 
equation of  dynamics   by   considering   time  means   only. 

At  the next  stage,   a   stc.istical  quantity  of the probability- 
distribution   function  of  mot   :ular   velocities was   introduced.     Then,   by 
considering  the  physical   concept  of  a  molecular  chaos motion,   the  so- 
called Maxwell-Boltzmann   law was  proved  by   taking  into account   the distri- 
bution function.     On   the  other hand,   diffusion  or heat-conduction phenom- 
ena were known  for   the case of  a gas which was   slightly deviated   from  the 
equilibrium state.     Concerning such  phenomena,   the  transfer  theory was 
developed with  the  quantity of a mean-free  path   defined  as  a   scale  length 
of molecular  chaos  motion.     This   theory has  given a   theoretical   inter- 
pretation  to  the  postulation by which  all   the  viscosity coefficients   are 
made  constant   in  the  Navier-Stokes  equations.     But  the Newton dynamics  has 
given no direct  contribution  to  the  basis   of  the   transfer   theory^just  as 
the  Navier-Stokes   equations     have  no direct  connection to   the   transfer 
hypothesis  introduced  by  Prandtl.     It  is  characteristic  at  this   stage   that 



the  statistical   quantities have been  introduced  first  to  denote   the mean 
state of molecular chaos motion, just  as   in  the  stage when  the  statistical 
quantities  of   the mixing  length or   the Euler  correlations  were   introduced 
to the stuoy  of  turbulent  flow. 

An  important  feature of  statistical  dynamics may be   found   in   the 
interpretation of  the   second  law of   thermodynamics.     Certainly,   such  an 
irreversible   feature  as   the  increase  of  entropy  is  different   from  that 
of  the Newton dynamics   in which   the mathematical  process   is   always 
reversible.     An  important problem at   that   timia was   the   interpretation of 
this   irreversible  phenomenon  from  the  viewpoint  of  the Newton dynamics,   as 
in  the case  of  the  first  law of  thermodynamics.     Boltzmann  attempted  to 
answer  this  question  by considering   the  entropy as  a  probability- 
distribution   function,   implying  the   grade  of   the  randomness   of molecular 
chaos motion.     Through many discussions  of  his  proposition,   the   theoreti- 
cal meaning  of  regularity or  irregularity  has  gradually  been grasped. 

In present   statistical  dynamics,   mathematical   formulations   are made 
usually  in the  phase   space,  where  the   location and momentum of  every 
molecule   is  designated   on  the  coordinate  axes.     In  this   space,  mean 
characteristics   of molecular chaos  motion  are  expressed   in  a  probability- 
distribution   function.     According  to   the   formulation  in   this   space,   the 
Hamilton-Jacobi   equation of motion  of  a   system of particles   is   transformed 
into  the  Liouville  equation  in an  energy-constant domain.      In order  to 
make  the  expression of  dynamics   in   the  phase  space convenient  for  mathe- 
matical  analysis,   the  probability-density   function  is  assumed   to  have  a 
constant   value   in  the   energy-constant  domain.     It  is   too  difficult   to 
prove   this   assumption   directly  by   the   equation of  dynamics,   and   it   can  be 
regarded  as  an  expression of  the  physical   concept  of  the   irregularity of 
the  state  of  molecular  chaos motion.     For   example,   let  us   consider   the 
following  situations   of  a   system of  many molecules   in   the   crystal   structure 
of metal.     When   the   absolute   temperature   is   zero,   every  molecule   remains 
at  rest   in  its   respective  position   in   the   crystaJ^slTructure,   and   each 
momentum  is   zero.      In   this  case,   the   system  o-f molecules   is   indicated  by 
one point   in   the  phase   space.     When   the   temperature  is  not   zero,   every 
molecule  of   the  crystal   structure makes  an  agitating motion  around   its 
original   position of   zero  temperature,   and   the  distribution   function 
denoting   these molecular motions   takes   the   form of  a  continuous   function 
in the phase   space with  its highest  density   at  the point   of   zero   tempera- 
ture.     It   is   easily  supposed  that,   as   the   temperature  rises,   the   agitating 
motion becomes   strong,   and   the  scope  of   a   continuous   distribution   function 
becomes wider.     At  an   extremely high   temperature,   a  solid   body  changes 
into  a  gaseous   state   and  every molecule moves  around  at   random  in   space, 
freed  from its  original  position  in  the crystal  structure.     In  the  gaseous 
state,   it may  be  appropriate  to  assume  that   the probability  density 
distributes with   a  constant  value  everywhere  in an energy-constant  domain 
in  the phase   space.     This  assumption  is  known as  the  Ergode  hypothesis. 
According  to   this  hypothesis,   the  time means  of various  characters  of  the 
molecular  chaos  motion  can be  transformed  directly  into   the  area  means  in 



the  phase   space.      Thus,   it  becomes   easy   to   survey   the  characteristics  of 
the   time  means   of   a  molecular  chaos  motion  depending  upon   the  Newton 
dynamics.      Namely,   when   the   random  phenomenon   is   expressed   in  mathematical 
form and   introduced   into   the   fundamental   equation,   a  definite   system of 
statistical  dynamics   is   formed. 

As  reviewed   above,   in  statistical   dynamics   the  purely   statistical 
hypotheses  were   at   first  intermingled  with   those  of  dynamics,   and   the 
theoretical   foundations  were  not  necessarily  definite.      In  present   statis- 
tical   dynamics,   two  principles  oi   the  Newton  dynamics   and   the  Ergode 
hypothesis   adapted   to   the  physical   image  of   a  molecular  chaos motion have 
developed   fruitful   quantitative  discussions.      Since   the  success  of   statis- 
tical  dynamics,   such   a   statistical  method  of   study  has   also  been   applied 
to   the  phenomenon   of  a   chaotic  motion  of  electrons.     Quantum  statistical 
dynamics  has   been  developed   from  the   above-mentioned   point   of   view.      It 
is   important   that   classic   or  quantum   statistical  dynamics   has   not  merely 
been  examining   the   Hamilton-Jacobi  or   the  Schrodinger  equation   in   time 
means,   as   did   previous   studies  of   turbulent   flow.     The  esserrtial   feature 
of   the  present   statistical   theory   in  physics   is   that   the  concept   of   an 
irregularity  belonging   to  the  phenomenon   is   also  expressed  mathematically 
and   is   introduced   into   the  basis   of   the   theory. 

4.      THE  SIGNIFICANCE OF  THE STATISTICAL THEORY OF TURBULENCE 

As mentioned   in Section 2,   the  Reynolds   equations   are  certainly 
basic,   necessary   conditions   in  the  statistical   studies  of   turbulent   flow, 
although   they  are   not  mathematically  conclusive.     In  all   successful   studies 
of   turbulent   flow   since   Reynolds'   time,   insufficient  physical   principles 
not   implied   in   the   Reynolds  equations   have  been  properly  compensated   for 
by   some  assumptions   concerning  the  mean  characteristics   of   the   turbulent 
agitating motion.      This   fact  should   not   be  overlooked.     For   instance,   the 
assumption  of   the   distribution  of   the  mixing   length   in   the   turbulent   shear 
flow  or  of   the   similrity  preservation   of   the   Euler  correlation  functions 
in   the  isotropic   turbulence  seems   to   verify   the   essential   point  of   the 
mechanism of   turbulent   flow. 

In  these  assumptions,   however,   it   is  difficult   to  find   any  unification 
as   a  general   theory  of   turbulence.     As   for  the   velocity   fluctuations   them- 
selves,   some   theoretical   studies were  developed   in  the  field   of   the   iso- 
tropic   turbulence.      Due   to  the  development  of   a   hot-wire   technique,   fine 
structures  of   the   velocity  fluctuations   of  nonisotropic   turbulent   flows 
have been clarified,   but   these  recognitions  of   the mechanism of  noniso- 
tropic   turbulent   flows   are not  yet  expressed  definitely  in mathematical 
formulas.     Also,   it   seems  unreasonable   to  extend   the  theory  of  isotropic 
turbulence  to  the  case  of   turbulent  shear   flow.     In other words,   the 
physical  principles  which   the Reynolds   equations have  lacked   are  not  yet 
established   in   the  form  of a  statistical   theory  of  turbulence   in general 
cases. 



The  derivati.   u of   the Reynolds   equation  from  the  Navier-Stokes  equa- 
tions  corresponds   to  early   statistical   dynamics   in which   only   the  Newton 
dynamics   in   time  means   played   a   predominant  role.     The  Navier-Stokes 
equations   consist  of   two  parts:      the  Newton dynamics   applied   to  the  con- 
tinuous  medium of  a   fluid,   and   Hooke's   Law,  which  postulates   the   linear 
relation  between   the  stress   and   strain  of   the medium.      Physical  meaning 
of  the  equations   is  easily  comprehended,   but   the  mathematical   expressions 
are   very   complicated       Therefore,   the   Reynolds   equations   are   not 
mathematically  conclusive,   unlike   early   statistical   dynamics       The  source 
of  confusion   arose  at   the   same   time   that   the   statistical   study  of   turbulent 
flow was   opened. 

On   the   other  hand,   the  Reynolds   equations,   even   if   they   are  not   in 
the   state  called   "turbulent   flow",   are  widely   adaptable   to   flows  which 
have  definite  values  of  velocity   fluctuations.     At   present,   necessary 
and   sufficient  physical   concepts   of   "turbulent   flow"   are   not   generally 
expressed   in  mathematical   formulae.      Therefore,   to  give   a  clear  physical 
image   to   "turbulent   flow''^ it   becomes   necessary   to  give   appropriate mathe- 
matical   expressions   to   the   Reynolds   stress  which   has   made   the   Reynolds 
equations   mathematically   inconclusive.      By   doing   so,    it   may   be   possible   to 
lay     unifiable,     necessary   and   sufficient   foundations   for   statistical 
study  of   "turbulent   flow". 

If   only   the   time  means   are   definite,   can   all   kinds of   flow  having 
velocity   fluctuations   be  called   "turbulent   flow"?     Many researchers   may 
give  negative   answers.      If   so,   what   is   "turbulent   flow" and  why  does   the 
velocity   fluctuate? 

On   this   problem,   the   following   supposition  has   been   supported   by  manv 
researchers   since   Reynolds'   time;   namely,   in  "turbulent   flow"   the  velocity 
fluctuations   are   caused   by  many   parts   of   the   fluid  which   make   their 
respective   rotating motions   and   are  carried  by   the mean   flow   in  an   irreg- 
ular   arrangement.      The   above   situations   may   be  understood   by   such   an   obser- 
vation   of   flow   as   shown   in  Figure   1   or   2.      This   type   of   fluid   flow  has 
usually  been   called   an   "eddy  current".      If   the  above-mentioned   physical 
image  were   not   kept   in  mind,   the   concept   of   the   scale   of   turbulence  could 
not  be   introduced.      Furthermore,    it   is   doubtful  whether   the   Euler  correla- 
tion   or   even   the   Isotropie   turbulence   could   be  defined   in   the   study  of 
turbulent   flow.      Thus,   the   concept   of   an   "eddy  current"   can   be   taken   as 
the   physical   background   of   all   the   previous   studies   of   turbulent   flow. 
However,    it   is   also   true   that   this   physical   image   has   not   been   formulated 
into   a   definite  mathematical   expression. 

In  order   to   grasp   the   concept   of   an   "eddy   current",   one   must   further 
clarify   the   hydrodynamica1   meaning   of   an   "eddy".      By   observing   the   actual 
turbulent   flow,   especially   by   taking  photographs   of   an   instantaneous 
state   of   flow   as   shown   in  Figure   1   or   2,   one  can   regard   an   "eddy"   ns   a 
vortex motion   of   fluid.      Also,    the   "eddy   current"  may   be   interpreted   as 
the   flow   in  which  many  vortices   are   carried   in   their   chaotic   states.      Such 
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a physical image of the structure encompasses all sorts of "turbulent 
flows";  those from a nozzle, along a wall, in a pipe, and others.  At 
the same time, the "eddy current" cannot be adapted to "nonturbulent 
flows" with the velocity fluctuations such as the laminar boundary layer 
flow and others with a Tollmien unstable wave. 

In the physical image of an "eddy current", the concept of the chaotic 
state of the arrangement of vortices is important.  Many researchers do 
not consider the flow of regularly arranged vortices, such as the Karmin 
vortex streets, as "turbulent flow".  The term "eddy", however, has 
recently become indistinct, and sometimes it may mean a wave number of 
the spectrum of velocity fluctuation.  Therefore, in order to make clear 
the above-mentioned physical image, another term, "vortex chaos motion", 
will be used. 

It is not the intention in this report to discuss the study of 
turbulent flow according to the progress of statistical physics mentioned 
in the last section.  However, the assumption of a vortex chaos motion 
will be used as a foundation for the statistical studies of turbulence. 
The concept of a vorttx chaos motion consists of the two basic parts of 
an individual vortex notion and of their irregular arrangements.  For the 
former, fluid motion around the vortex filament should be determined from 
the hydrodynamical equations of motion.  At the same time, the latter 
concept of an irregularity may not have a direct connection with hydro- 
dynamics.  If attention is given only to the irregular arrangement, this 
concept must have the same meaning as it does in the case of classic or 
quantum statistical dynamics. 

It may be the concept of tho Ergode hypothesis that will give a 
nathematical expression to the characteristic of irregularity in the 
physical image of a vortex chaos motion.  As a matter of course, the 
ahysical image of a vortex chaos motion is different from that of a 
nolecular or electronic chaos motion, and it is not appropriate to adapt 
3oltzinann's hypothesis in the phase space to the case of a vortex chaos 
notion.  On the other hand, it is certain that the previous statistical 
itudies of turbulence have lacked a definite formulation of the concept 
)f irregularity, similar to statistical dynamics before Boltzmann.  It is 
»reposed that the fundamental concept of the Ergode hypothesis is also 
.ntroduced to the statistical study of turbulence.  Thus, the phv real 
mage of a vortex chaos motion may give unifiable interpretation.i -o 
he mean states of velocity fluctuations, depending on the two principles 
•f the hydrodynamics of a vortex motion and of the statistical physics 
■f their irregular arra .gements. 

If the Navier-Stokes equations were solved exactly in the case of a 
ortex chaos motion, the statistical principle could be avoided.  Until 
uch a mathematical treatment is completed, the essential meaning of the 
rgode hypothesis is necessary as a theoretical principle.  From the 
bove-mentioned point of view, an attempt will be made to propose such a 
tatistical theory of turbulence in general cases that may include the 



previous   successful   theories   as   special  cases and  may  give  some  quantita- 
tive   results  to other  fields  beyond   the  scope of  the  previous  theories. 
The  purpose  of  this work,   then,   is   to present general   descriptions  of   a 
statistical   theory of   turbulence. 
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CHAPTER  TWO.     FUNDAMENTAL CHARACTER OF  VORTEX  CHAOS   MOTION 

3.      FORMATION  OF  VORTEv  CHAOS  MOTION 

Real   turbulent   flow   can   be   interpreted   as   vortex  chaos motion;   however, 
before   expressing mathematically   the   vortex   chaos   motion,   in   this   chapter, 
some   important   physical   characteristics will   be   related  which will   classify 
vortex   chaos   motion   into   fundamental   groups.      Generally   speaking,   vortex 
chaos motion    is   formed  when   a   solid   body   is   put   into   the   flow  of   a   fluid. 
At   least   one   vortex motion   is   produced   just   behind   the   body.     At   standard 
Reynolds   number   values,    this   vortex   is   carried   away   from   the  body   and   a 
new   vortex   is   produced   again   at   the   same   location.      These   vortices,   being 
produced   and   separated   one   after   another   just   behind   the   body,   keep   a 
regular   arrangement   at   first   and   then  gradually   become   irregular   along   the 
flow        The   term   "vortex  chaos   motion"  refers   to   such   an   irregular  arrange- 
ment   of   vortices  and   Figure   1   shows   the   transient   condition of  vortex  chaos 
mot ion. 

This   transition   phenomenon will   be   surveyed   in   detail   for  a   typical 
case   of   a   circular  cylinder   in  uniform flow.      Records   of   velocity  fluctua- 
tions   indicate  generally   regular  wave  forms   just  behind   the cylinder,   but 
at   a   distance   from  the  cylinder   they   tend   to  become   irregular.     Some 
examples   of   these  records   are   shown   in Figures  4   and   5.     When  observations 
are  made   in wate^it  can  be   seen   that,at  first,   vortices   produced   just 
behind   a   cylinder  separate   one   after  another  and   form  a   regular  arrangement 
of   Karjnan   vortex   streets.      Although   these  regular   arrangements   are   retained, 
the   Karman  vortex  streets   tend   to   be  broken   into   an   irregular  chaotic   state 
along   the   flow. 

The   physical  mechanism  of   the   formation  of  a   vortex motion  has  not   been 
clarified,   not   to  mention   the  mathematical   condition.      Owing   to many  obser- 
vations,   however,   the   production  of   a   vortex motion   cannot  be  imagined   in 
the  case   of   a   nonviscous   flow,   i.e. ,   in  the  case where   the momentum of   the 
flow   does   not   transfer   across   the   flow.     It   is   certain   that   the  viscosity 
due   to  molecular  or   turbulent   agitating motion  plays   an  essential   role   in 
producing   a   vortex motion. 

Moreover,   concerning   the   transition phenomenon   from a   regular   to  an 
irregular  arrangement  of  vortices,   definite  interpretations  have  not  been 
given,   depending  upon   the  hydrodynamical   equations   of motion.     If   the 
following   supposition   is  allowed,   the   transition may   be made  as   follows: 
at   first,   the   laminar  boundary   layer   separates   from a circular cylinder   since 
it   is   unable   to   resist   the   adverse   pressure  gradient,   and   the   separated 
laminar   boundary   layers   are   curled   into  two  vortex motions   at   symmetrical 
positions   just  behind   the cylinder.      This  unstable  symmetrical  arrangement 
of   the   two   vortices   is   easily  broken   by disturbances   contained   in   the main 
flow,   and   the   vortices   are  diverted   into  the   flow  one   after  another.      In 
these   diverted   vortices,   molecular   viscosity  at   first   affects  only   the 
narrow   region  around   each   vortex  center,   so   that   the   vortices   are   arranged 
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into  the  pattern of  stable  Karman  vortex  streets.     As   the  regions   affected 
by  viscosity expand   along  the   flow,   their   actions  on  each  other  produce 
three-dimensional  disturbances.     Thus,   since   the Karman  vortex  streets 
are proved  to be neutrally stable  in a  nonviscous   fluid,   this   flow  pattern 
is   easily broken and   the  arrangement of  vortices changes gradually   into 
an   irregular one. 

From  the  above   interpretation,   it  may   be   concluded   that   in  vortex 
chaos  motion  the  viscosity  of   every  vortex  constantly  affects  other   vor- 
tices  near by.     When   two   vortices with   the   same  direction of circulation 
draw  near,   it   is   assumed   that   a  new  vortex   is   produced  between   them  by 
taking   some  parts  of   their  energy  by  viscosity,   just   as   the  primary   vortex 
is   produced  by   taking   energy   from  the main   flow  by   the  viscosity   in   the 
boundary   layer  around   a   body.      These  new  vortices may  produce   further   small 
vortices   in  the  same  way,   and   a   sort  of  cascade  phenomenon  can  be   presumed. 
Of   course,   there may  be   a  chance  that  a  primary  and   a   new  vortex will   bring 
out   a   third  one,   and   the   cascade  phenomenon   in   vortex  chaos  motion   presents 
a   very  complicated   situation.      In  the  actual   turbulent   flow,   the   existence 
of   newly   created  vortices,   other   than  those   of   the   primary  vortices,   has 
seldom been observed.      It   is  more  natural,   however,   to consider   that   the 
vortex chaos  motion   inevitably   accompanies   the   cascade phenomenon,   rather 
than  to   assume   that   the   vortex  chaos  motion  consists   only of   the   primary 
vortices.      In other  words,   in   turbulent   flow,   chaotic  motions  of   all   these 
vortices   produce  velocity   fluctuations  everywhere  in   the  field  of   flow. 

6.      TURBULENT FLOW OF A  DECAYING CHARACTER 

In   turbulent   flow, vortcxchaos motion   usually  comprises  many   types   of 
vortices     depending  upon   the  means  of generation;  however,   the  vortex  chaos 
motion may be divided  generally  into  two  fundamental   types.     One  is   the wake 
flow behind   a  lattice     or body  or  the  jet   from  a mouth of a  pipe,   and   the 
other  is   the  boundary   layer  or  pipe  flow. 

In  the case of  the   turbulent wake or  jet where   the obstacle which 
produces   the primary  vortices   is   located  at  one  position along  the   flow, 
the   energy of the main   flow  is   transmitted   into  vortices  at  only one  place 
in  the  field.     Although   the cascade phenomenon   is  taken into  account,   small 
new  vortices  are produced   from part of  the  energy of   the  ascending  vortices. 
Therefore,   the energy  contained   in  the  individual  vortices decreases   along 
the   flow.     The quantitative  relation between  the  energy of  vortex motion 
and   the   turbulent  intensity at   a point  in  the   field  of  flow will  be  clari- 
fied   later.     However,   in   the  case of  the  turbulent wake or jet,   an   impor- 
tant  characteristic   is   that   turbulent  intensity  decays   inevitably  along 
the   flow.     An example  of   the  data   in  this  case   is  shown  in Figure  6. 

In  the case of  the wake or   jet,   even if  individual  vortices  and   the 
conditions  of  their mixture depend  on the  pressure gradient along  the   flow 
and   other   factors,   the  origin of   turbulent  energy lies   in  the primary  vor- 
tices  and   is   transmitted   to  the  small  descending  vortices  along  the   flow. 
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Thus,   the effect  of   the  primary vortices  may  be  succeeded by  the 
descending ones   along   the  flow,   and  this   case will  be called  "decaying 
turbulent  flow". 

In decaying  turbulent   flow,  consider  a   special  case of  flow behind  a 
uniform lattice  put   across   the main flow.     Just  behind the  lattice,   some 
regularity remains   in  the arrangement  of  the  vortices  produced  from the 
rods  of  the  lattice.     As   in  the case of  a  circular  cylinder,   the  mutual 
disturbance of  these  vortices  becomes   large  along   the  flow.     In  this  case, 
however,   the breadth of  the  range of the  whole chaos motion  is   far  wider 
than  the  scale of   the   individual vortices   in   the   flow,  so  that  all   the 
vortices  become mixed completely with no  observable regularity   in   the 
effect  of  their  interaction.     This   fact may  be comprehended by   the  observed 
results  behind a  two-dimensional  lattice   shown in Figure  1.     It  may  be 
concluded,   then,   that   in a  turbulent  field behind  a  lattice,   the  primary 
vortices  and  their   descending vortices  are  all  carried in their  completely 
irregular  state. 

Thus,  velocity   fluctuation at  a point  downstream from a  lattice  is 
due   to   the  independent   and irregular causes  of vortex motion.     Further- 
more,   although many  kinds  of  vortices  pass  near this  point,   their mean 
characteristics  are   definite.     It  is generally  proved by the Gaussian 
central-limit  theorem  that when a fluctuating  event  occurs  because  of 
some  causes of independent  irregularity,   but  with  definite mean character- 
istics,   the probability  distribution of  this   event  obeys  the Gaussian 
distribution function.     The  decaying  turbulent  flow behind a  lattice  is   an 
example  of  thia  case.     Examples  of observed results  on the  probability 
distribution are  shown  in Figures  7,  8,   and 9. 

Situations  of  the  velocity  fluctuation behind  a circular cylinder 
are considered  in Section 5.     In this case,   even if  the K^rm^n vortex 
streets   tend to be  irregular,   it cannot be  assumed  that a vortex motion 
is  affected uniformly  from all  directions   by  other vortices,   as   in  the 
case  of  a  lattice.     A vortex carried on one  side of  the Karman vortex 
streets  is  affected chiefly by  the vortices  of  the  other side,   even  though 
they  are  in a chaotic   state.     Therefore,   it   is  difficult  to mix  into a 
completely  irregular   state just  as  in the  case of  flow behind a   lattice. 
Such a  situation is  generally  true in the  case of  the wake behind a body 
or  of   the jet  from a  pipe. 

The descending  small vortices produced  through  the cascade   process 
may  tend,  even in  the  case of  a wake or  jet,   to become completely  irregu- 
lar,  being affected uniformly by the surrounding vortices because  their 
dimensions  are  far  smaller  than the whole  dimension of  the vortex chaos 
motion,   as  are  the  primary vortices  in  the case of  a  lattice  flow.     Since 
some  regularity remains   in the  primary vortices of  high energy,   the 
velocity fluctuation at  a point  in the  field  is  due  not entirely  to 
independent causes  for  a  particular  time.     Thus,  unlike the case  of  a 
lattice  flow,   the central-limit  theorem does  not hold,  and the  probabil- 
ity  distribution should differ  somewhat  from the Gaussian function. 
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From the  above discussion,   it  may  be concluded  that when  the  breadth 
of  a vortex chaos  motion  is  far wider   than the  mean  scale   length of   the 
individual  vortices,   the  chaotic   state of  their  arrangement  becomes 
completely  irregular;   but when  the whole  breadth  is  comparable  with   the 
individual  scale   length,   some regularity  remains  in  their  chaotic   state. 
In the  latter  case,   the  regularity  produces   some  nonzero values  in üv 
and similar components  of  the velocity  fluctuation at  a  point   in the 
field which affects  the   turbulent   shearing  stress,  giving   distortion  to 
the mean-velocity  profile;   the  flow represents   that which   is  called 
"turbulent  shear  flow".     Thus,   the  decaying  turbulent  flow can  be 
divided into  two   types,   which  shall  be  called   "shear  turbulent   flow"  of 
a wake behind  a body or   jet,  and "shearless   turbulent  flow"   behind  a 
lattice. 

7 .     VISCOUS  SUBLAYER NEAR THE WALL 

In the case  of  turbulenc  flow in  a boundary   layer or   pipe,   it   is 
appropriate  to  regard  the vortex chaos  motion  as  consisting  of  many 
kinds  of vortices   rather   than a single  kind as   in the case   of   the 
decaying  turbulent   flow.     However,   the  circumstances  of   the   production 
of vortices  are  entirely  different   from the  decaying  turbulent   flow. 
When a fluid  flows   along  a wall or  a  body,   a   laminar boundary   layer   is 
always  formed  from  the  forward  stagnation  point  under an ordinary 
Reynolds  number.     Sometimes   it  separates   from   the body  as   it   is.     In 
many cases,   however,   the   laminar boundary   layer  is broken   into   a turbulent 
state before  the   separation,  and a  turbulent  boundary  layer   is   still 
developed along   the wall. 

The mechanism of  transition from  a   laminar  to a  turbulent  boundary 
layer  is not yet  clearly  comprehended.     However,   if  the  flow does  not 
disturb  the  laminar boundary  layer,   the   transition cannot  be  imagined 
before  the boundary   layer  separates.     From hot-wire observations,   it 
is   ascertained  in  the   laminar boundary   layer   that  the characteristic 
velocity  fluctuation,   which  is  known  as   the   laminar oscillation,  grad- 
ually grows  along   the  flow.     Figure   10  is  an  example  of  such  an obser- 
vation.     Moreover,   it  is  well known  that  when   the main  stream distur- 
bances  are small,   the   laminar oscillation has   the  same characteristics 
as   the Tollmien-Schlichting unstable  wave  predicted by  the   linearized 
Orr-Sommerfeld  equation of   the  unsteady  laminar boundary  layer.     An 
example of  observations   in  this  case   is   shown  in Figure   11. 

This  growing   laminar  oscillation,   whether   it  is   the Tollmien- 
Schlichting wave  or not,   seems  to bring  forth  a vortex motion  in the 
boundary   layer.     The  interpretation of  an instantaneous   separation  of 
the  laminar  boundary  layer by  the  growing  oscillation may  be   taken  as 
one of  the causes  of a vortex motion.     Although a definite  verification 
on  the instantaneous  laminar separation is not  available,   it  is  observed 
that  the  laminar  boundary   layer,  which  does  not  separate  as   does  the 
steady flow,   abruptly  brings  forth  a vortex motion.     Figure   12   shows 
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such a situation of the outbreak of a vortex motion in a laminar boundary 
layer. When the laminar boundary layer oscillations are recorded at the 
region of transition, an intermittent high-frequency oscillation is usually 
perceived as shown in Figure 13.  Its appearance also seems to indicate 
the outbreak of a vortex motion in the boundary layer. 

When transition occurs, the laminar boundary layer loses the original 
meaning.  However, when the vortices produced by transition do not sepa- 
rate from the body and a main flow still exists along the wall, it is 
generally supposed that due to the effect of molecular chaos motion that 
molecular viscosity exists in the immediate vicinity of the wall.  In this 
case, just above the region of molecular viscosity, strong vortices pro- 
duced by the transition are carried along, and they contribute great 
disturbances to this part.  Thus, before growing into the normal state of 
a laminar boundary layer, the viscosity part is broken again and produces 
strong vortices.  Such production of vortices will be repeated along the 
wall, and molecular viscosity is maintained as a very thin layer along 
the wall.  Once transition has occurred in the laminar boundary layer, a 
kind of viscous layer, which cannot become an ordinary laminar boundary 
layer, remains, bringing out strong vortices successively along the wall. 
In Section 1, the existence of the stability limit is expressed by the 
Reynolds number of the order 102, where all the disturbanced of the flow 
are decayed by the effect of viscosity.  Within this extremely thin layer 
corresponding to this value of the Reynolds number of stability, the 
effect of molecular viscosity must be predominant.  The above-mentioned 
condition is the previously proposed interpretation of the so-called 
laminar sublayer (reference 21).  Although the state of flow in this 
layer is greatly influenced by the effect of viscosity, there are also 
large velocity fluctuations; and to avoid a misunderstanding, the term 
"viscous sublayer" will be used.  Figure 1A shows an experimental result 
in the immediate vicinity of the wall in a turbulent boundary layer. 
Because of the rapid reduction of the fluctuations and mean velocity very 
near the wall and the decreasing of high-frequency fluctuations, the exist- 
ence of the viscous sublayer may be ascertained. 

Because the viscous sublayer is extremely thin, as shown in Figure 
14, precise measurements are difficult and characteristics of this layer 
still remain unknown.  However, the production of vortices from the wall 
can be clearly observed everywhere along the flow (reference 23).  In the 
case of turbulent flow in a pipe, the observations are essentially the 
same as in the case of boundary layer flow.  In other words, after the 
transition of the laminar boundary layer from the inlet of the pipe, the 
viscous sublayer is developed generating strong vortices along the inner 
wall.  Such a condition may be understood by the observed result in 
Figure 2. 

8.  TURBULENT FLOW OF NONDECAYING CHARACTER 

In the case of turbulent flow along a wall or in a pipe, discussions 
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in many cases are made concerning the region far downstream from the place 
of transition.  In this region, all sorts of vortices produced upstream 
are carried in chaotic state.  In the case of decaying turbulent flow, 
only the primary vortices are produced, receiving the energy of the main 
flow directly, and the descending vortices are produced from some of the 
energy of the ascending ones.  The cascade phenomena, similar to that 
which might occar in a decaying turbulent flow, may also exist in the 
case of turbulent flow along a wall.  Since the primary vortices of the 
same order of intensity are produced constantly along the wall, the 
effects of the descending vortices are far smaller than in the case of 
decaying turbul nt flow.  Vortices produced at a point are affected 
instantly by tht primary vortices produced upstream from this point, and 
the velocity Is  influenced constantly by all primary vortices produced 
upstream.  As the fluid goes down along the wall, the state of the 
turbulent flow is affected by the local characteristics of the newly 
produced primary vortices, and the upstream history of the flow is for- 
gotten.  This is an essentially different feature from the decaying turbu- 
lent flow in which the history of the primary vortices is succeeded by 
the descending vortices one after another.  Thus, it is thought that the 
vortex chaos motion in the real turbulent flow should be divided at first 
into these two groups. 

The kinetic energy of the primary vortices produced by the effect 
of the viscous sublayer may depend upon the pressure distribution along 
the flow, the roughness of the wall, and many other factors.  However, 
since the primary vortices are produced along the wall, each with consid- 
erable energy, the intensity of the velocity fluctuation does not necessar- 
ily decay along th.e flow.  This essential difference from the decaying 
turbulent flow can be easily detected by experimental observations.  When 
the observed results shown in Figure 15 are compared with those in Figure 
6, the difference between the two cases is clearly seen.  This case will 
be called the "nondecaying turbulent flow". 

All the vortices produced upstream from a fixed point in the non- 
decaying turbulent flow are carried nearby.  With the exception of the 
low-energy descending vortices which were produced through the cascade 
process, the production of the primary vortices is entirely attributed to 
the effect of the viscous sublayer which exists only on the wall along the 
main flow, and the breadth of all the vortex chaos motion is not much 
wider than the width of the individual vortices.  Therefore, it cannot 
be assumed that the effects of these vortices on a fixed point are 
completely random regardless of the direction of the field of flow.  Sim- 
ilar to the decaying turbulent flow of a wake or jet, some regularity 
remains in the chaotic state, at least with the primary vortices having 
high energy.  This characteristic may be observed in Figure 2.  Because of 
some regularity in the arrangement of vortices, the nondecaying turbulent 
flow may be called shear turbulent flow.  However, it must be realized 
that the nondecaying turbulent flow has a more essentially different 
mechanism from the decaying turbulent flow than the difference between 
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the shear and s .earless turbulent flow in the case of the decaying turbu- 
lent flow. 

As a matter of course, existence of some regularity produces nonzero 
values in the Reynolds shearing stress, causing further deviation of the 
mean-velocity profile.  Namely, when the probability distributions of 
velocity are measured, they do not indicate the Gaussian distribution 
function as shown in Figures 16 and 17. 

Thus, because of the above discussions on the fundamental mechanism 
of vortex chaos motion, the real turbulent flow may be systematized as 
fo11ow s: 

A. Decaying turbulent flow 
1. Shearless turbulent flow 
2. Shear turbulent flow 

B. Nondecaying (shear) turbulent flow 

In the next chapter, fundamental mathematical expressions of the 
general vortex chaos motion will be given, and in the following chapters, 
quantitative discussions will proceed case by case according to these 
classifications of turbulent flow. 
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CHAPTER THREE.  STATISTICAL DESCRIPTION OF VORTEX CHAOS MOTION 

9.   THE REYNOLDS EQUATIONS 

For the case of a fluid with a constant density and temperature, the 
following equations of motion are given by Navier and Stokes (reference 
25): 

rx^P+yc^      *y*~P+?"%j     ^-P+^ > 

(9.1) 

In equation (9.1) t is the time; x, y, and z are Cartesian coordinates in 
the field of flow; U, V, and W are velocity components of the x, y, and z 
direction, respectively; P is the static pressure, and X6 is the coeffi- 
cient of viscosity. 

When the viscous terms multiplied by yU. are neglected, the Navier- 
Stokes equations (9.1) become the Euler equations of a perfect fluid in 
which the Newton dynamics are applied to the continuous medium of a fluid 
by neglecting higher'order terms in the Taylor expansions.  As for the 
viscosity coefficient, yU* >   it is assumed by Hooke's law to be constant 
in the field of flow.  Depending upon the statistical dynamics of gas, ><.<• 
is expressed by the product of the mean velocity, the mean free path, and 
the density of the molecules.  Therefore, at a position which is further 
from the wall than the length of a mean free path, the three quantities 
may be assumed to be constant, and Hooke's law can be adapted.  It is for- 
tunate for hydrodynamics, whose equations of motion are expressed in (9.1), 
that the mean free path of a gas at standard temperature has a length of 
the order of 10"  centimeters and is far smaller than a macroscopic stand- 
ard length in the field of flow. 

In spite of many neglected terms in deriving the equations, one can 
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find no experimental evidence that the Navier-Stokes equations are inade- 
quate to describe the real motion of a fluid.  As mentioned in Chapter One, 
the chaotic motion in a turbulent flow has a macroscopic scalf far larger 
than docs the molecular chaos motion of gas.  Even if it is mathematically 
difticult to prove, the Navier-Stokes equations are assumed t^ hold 
accurately in Lhe actual state of turbulent flow. 

When velocity fluctuations exist in the field of flow, velocity 
components at a point are written by dividing them into the mean and 
fluctuational parts, 

where , 
t+t t'+t t'+t 

(9.2) 

(9.3) 

In the above expressions, the limiting values of U, V, and W are assumed 
to be definite independently ot the value of a starting time, t', of the 
integration.  Hereafter, all the mathematical discussions will be based 
upon this assumption of the existence of definite mean values.  For sim- 
plicity of description, t' is often replaced by 0, and sometimes mean 
values are denoted only by using the notation of a bar. 

By expressions (9.2) and (9.3) it is easily proved that 

iZ ' V = i27= tf, (9.4) 

and the mean values of their products, 

(9.5) 

do not necessarily vanish with definite values .  For simplicity of expres- 
sion, the root-mean-square values of /2c > /^» and /jrp* will be denoted 
by the Gothic letters <X , V , and %xr. 

When expressions (9.2) are substituted in the Navier-Stokes equations 
(9.1) and time means are taken, the equations can be written as 
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at) +i\t,     JlV_   y. 

%W£+§)-se* 
(9.6) 

In  equation   (9.6)   dU/dt    indicates   that   the  mean velocity  U may  gradually 
change for  a  far   longer  scale  of   time   than  the   time   interval   t   in  expres- 
sions  (9.3).     If   the  components   of   the   tensor  expression 

-u? - uir , 

-wa,      -^       _ x (9 7) 

are added to the respective components of viscous stress in equations (9.1), 
equations (9.6) have the same mathematical expressions as (9.1).  Equations 
(9.6) and expression (9.7) are known as the Reynolds equations and the 
Reynolds stress, respectively (reference 26). 

The assumption of the existence of mean values which has been the 
foundation of expression (9.3) or (9.4) can be adapted widely to the real 
state of turbulent flow.  Thus, the statistical study in which only the 
mean values are discussed has an important meaning in the study of turbu- 
lent flow.  The Reynolds equations derived from the Navier-Stokes equations 
based upon the assumption of existence of mean values can be regarded as 
necessary conditions to determine mean values for the time of fluctuating 
motion of turbulent flow.  In addition to the turbulent flow, however, 
there are many cases of unsteady flows in which the assumption of the 
existence of mean values can be adapted; for example, flow patterns of the 
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Karman vortex streets behind a body and of the  Tollmlen-Schlichting oscil- 
lations in a laminar boundary layer.  Therefore, the Reynolds equations 
cannot be regarded as the necessary and sufficient conditions to prescribe 
the mean state of turbulent flow.  It is significant that the Reynolds 
stress, newly derived from the nonlinear terms when time means are tapsn, 
makes the Reynolds equations mathematically inconclusive.  As mentioned 
ir, Chapter One, the cause of confusion arose when the statistical study 
of turbulent flow was opened. 

10.  COEFFICIENTS OF THE EULER CORRELATION 

The value of the Reynolds stress in expression (9.7) depends largely 
upon the amplitude of velocity fluctuation and is regarded as a statisti- 
cal quantity of the intensity of turbulent flow.  The Reynolds equations 
are necessary conditions relating the turbulent intensity and mean 
velocity.  As mentioned in Chapter One, there is another fundamental quan- 
tity of turbulent scale. Since formulas (9.6) and (9.7) are not concerned 
with this quantity, another statistical expression of turbulent scale must 
be established. 

Letting u, v, and w and u1, v', and w' be components of velocity 
fluctuations at two points A and A', respectively, and having coordinates 
x, y, and z and x', y', and z1 in the field of flow, one can define the 
following tensor expression of the correlation coefficients: 

uv* *     UVV*     \ 

wuv ww  f (10.1) 

If the A'-point coincides with the A-point, every numerator of the 
component of (10.1) becomes every component of (9.7) of the Reynolds 
stress.  In the turbulent state of flow, velocity fluctuation Is generally 
a continuous function of the time and location. Even If the A*-point Is 
slightly apart from the A-point, the patten.s of velocity fluctuation are 
similar (cf. Figure 3), and the component of (10.1) does n't necessarily 
vanish.  However, when the A'-point Is at a greater distance from the A- 
polnt, there will be no Interrelation between the two velocity fluctua- 
tions, and all the components of (10.1) become zero. When the components 
of (10.1) are regarded as functions of the distance between the two points, 
the value of (10.1) may be regarded as a statistical quantity signifying 
the scale of fluctuating motion of turbulent flow.  Expression (10.1) Is 
Introduced by Taylor (reference 13) as an extended formula of (9.7) of the 
Reynolds stress and Is known as the Euler correlation. 

According to the mathematical definition of the correlation 
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coefficient,   (10.1)   is  a  double  correlation.     If necessary,   the   triple 
correlation at  two  points  and   the   i-th correlation  at  N  points  can be 
defined.     Viewed mathematically,   they are   related   to  point  probability 
which  can be  defined,   based  upon  the  assumption of   the  existence  of mean 
values  mentioned in   the   last   section.     Physically   they   signify  details 
of  the  characteristics  of  the   turbulent  scale. 

The   tensor  formula   of   the   Euler  correlation  coefficients   (10.1)   is 
a  general   statistical   expression  of   the   two   fundamental   quantities   of 
intensity   and   scule   of   fluctuating motion  of   fluid.      However,   the   expres- 
sion   (10.1)   holds  not  only   for   turbulent   flow  but   for many  other   unsteady 
flows  with  definite   mean  values.      The definition  of   (10.1)   cannot   be   said 
to  compensate   for  the Reynolds   equations,   which   are   the   necessary  condi- 
tions   in   the   study   of   turbulent   flow. 

11.      PROBABILITY-DENSITY  FUNCTION   IN  VORTEX CHAOS  MOTION 

There  are many   kinds  of  unsteady flow  to which   the   formulas   in  Sec- 
tions   9   and   10  can  be  adapted.      In  order   to  establish   a   conclusive   statis- 
tical   theory  of  turbulent   flow,   however,   it   is  necessary   to distinguish 
the physical   image  of  turbulent   flow  from  the general  case of unsteady 
flows.      Then,   depending  upon   this   image,   the   components   of   the  Euler 
correlation   (10.1)   or  the  Reynolds   stress   (9.7)  must  be   expressed  as 
functions   of   the  location  in   the   field of   flow.     Thus,   combined  with   these 
formulas,   the  Reynolds  equations   (9.6) may  give  necessary  and  sufficient 
theoretical   foundations   for  a  general  statistical   description of  turbulent 
flow. 

The   interpretation of  a   vortex  chaos  motion mentioned   in  the  previous 
chapters will   be taken as   the mechanism of  turbulent  flow.     In any  case 
of   turbulent   flow,   whether   the   decaying or   the  nondecaying   turbulent   flow, 
it   is   certain   that  many  kinds   of   vortices   are   carried   by   the mean   flow   in 
an  irregular motion,   and   that   these  vortices  bring   forth   velocity  fluctua- 
tions   at   every  point   in   the  field   of  flow. 

In   the   above-mentioned   physical   image,   a   vortex motion means   the 
state   of   the   turning  movement   of   part  of  a   fluid   around   a   linear   part 
called   the   vortex filament.     The  characteristics  of  an  individual   vortex 
motion,   the   states  of   the   vortex   filament   and   the  distribution of   the 
turning  velocity around   the   filament,   may   be  observed.      However,   the 
vortex motion   is  a  phenomenon  of   fluid motion  and   has   no   definite  boundary 
as  a  rigid  body. 

In  the   turbulent  state of   flow,   these  vortices   are  carried   in a 
chaotic   state with  constant   interactions  along  the   flow.      Lengths,   direc- 
tions,   curvatures,   and  relative   locations   of  vortex  filaments change while 
they  are   being   carried   away.      For   the  situation  of   turning  velocity,   there 
are many  kinds   of intensity  and   scale.     In   this   section,   as   the   first   step 
in  deducing   a   statistical   description  of   this   physical   image,   a 
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probability-density  function  concerned  chiefly with   the  flow  of  vortex 
filaments will  be  introduced. 

Let   a  fixed  point   in   the   field   of  flow  be   called   the  A-point   for 
convenience of  explanation.      In Cartesian  coordinates x,   y,   and   z   in   the 
field  of  flow,   the x-axis   is   taken  parallel   to   the  direction  of   the  mean 
flow   through   the  A-point.     With  an  increasing   time   t   beginning  at   a   fixed 
time   t',   the  above-mentioned   vortex  chaos  motion will  be   imagined   near 
the  A-point. 

At   the beginning   time   t',   if perpendiculars   are  drawn   from  the  A- 
point   to   vortex  filaments   nearby,   definite   intersections  are  determined 
in   the   field of  flow.      Among  many vortex  filaments,   the nearest   filament 
that  has   the  shortest  distance  between   the  A-point   and  the   intersection 
can  be  pointed   out. 

With   an  increasing   time   t,   the  nearest   vortex  filament   at   the   begin- 
ning   time   t'  moves   near   the A-point,   varying   the   inclination,   curvature 
and   other  characteristics.      The  perpendicular  drawn   from the A-point   at 
the   time   t'   moves,   and   the   intersection   forms   n  continuous  curve  in   the 
xyz-space.     After   the  nearest   vortex  filament   at   t'   is  carried   away   from 
the  A-point,   another  filament   comes  into   the  nearest   proximity  of  the  A- 
point.     An alternation  of   the  nearest  filament   is   repeated  successively 
with   an   increasing   time   t.      Thus,   for  an  extended   time   t,   the  intersections 
of  perpendiculars  from  the A-point  to   the nearest  vortex filaments   trace 
many  kinds   of three-dimensional   curves   in  the  xyz-space   (cf.   Figure   18). 

Another characteristic     of a  vortex motion  is   the distribution  of 
turning velocity.     At  the  beginning time  t',   one  perpendicular plane   to 
the  nearest  vortex filament can  include   the  A-point.     The curvature,   the 
elongation of the  filament,   and  the effects  of other  vortices  near  the 
intersection of the  nearest  filament will  be  neglected.     Then,   the 
turning velocity of  this   two-dimensional   vortex  in  the  perpendicular 
plane  is  distributed  around   the   intersection.     Therefore,  at   the A-point 
a  turning  velocity of  this   vortex in the perpendicular plane  is determined. 
This   turning velocity is  denoted  by the  following vector with   the magni- 
tude  V*, 

V* (11.1) 

The x'-, y'-, and z'-axes from the A-point will be taken, respec- 
tively, parallel to the x-, y-, and z-axes.  The angles between V1* and 
the z'-axis, between the orthogonal projection of V* to the x'y'-plane 
and the x'-axis are denoted, respectively, by ^ and <9 ; and the 
distance from the A-point to the nearest vortex filament is r (cf. Figure 
19).  Then, regardless of the type of vortex chaos motion, the quantities 
r, ^, and ^ are determined uniquely at the beginning time t'.  With an 
increasing time t, they are expressed as functions of t: 
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(11.2) 

Although   the variables   of   (11.2)  are  continuous   functions  of  t   as   long 
as   the   reference  vortex   remains  at  the  nearest  distance  from  the A-point, 
they  vary discontinuously  for   long periods   correspondinb  to  ehe   loci   of 
the  nearest  intersections  as   shown  in  Figure   18, 

Now,   another  set  of Cartesian coordinates  x*,   y^ and   z* will   be 
taken apart from the   field  of   flow,   and   the  variables  of   (11.2)  will   be 
considered  as   the movement  of   one   point   in   the  x*y*z*-space.     Such   an 
A*-point will  be  taken whose   coordinates may  be  decided uniquely  by   the 
variables   of   (11.2)   and  whose  motion   in   the  x*y*z*-space may uniformly 
correspond  to  the motion of   (11.2)  in  the  r     &J   ^5-space,   as  the  polir 
coordinates shown  in Figure  20.     Then,   the A*-point moves  about   in   the 
x*y*z*-space discontinuously   for  long  periods  corresponding  to   the move- 
ments  of  the intersections  in   the xyz-space  shown  in Figure   18. 

In  a   vortex chaos  motion  where many  vortices   are  carried   irregularly 
one  after  another,   the   value  of  r  for   the distance  between  the  A-point 
and   the  nearest  vortex  filament  is  incapable   of  attaining  an  infinite 
value.     The movement   of   the A*-point   is   also   limited   in a  domain  of   a 
finite  distance   from  the   origin.     Such   a  domain  D*   of   finite  area   around 
the  origin  that   contains   all   the   loci   of  the   A^-point   in  the   time   inter- 
val   between  t'    and   t'+t   will   be   taken  as   shown   in  Figure  20. 

For   the movement  of   intersections  of  the  perpendiculars   from  the  A- 
point   to   the nearest  vortex  filaments   in  the   field   of   flow,   the  parts 
before   and   after   the   time   intervals when   the   filaments   are   in  the   nearest 
relation   to  the   A-point    (cf.   Figure   18)  will   be  considered.      If   such   excess 
parts  of   the  loci  of  the   intersection   in  the   field  of   flow  are  taken   so 
that   the  A*-point may  always  move  from  end   to   end   on  one boundary  of   the 
D*-domain,   then   the movement   of   the  A*-point   in  the  D*-domain has   some 
excessively repeated  parts  of   time  interval   in   the  actual  state  of  flow. 
When the   total   sum of   the   excess   time   in  the   actual   time  interval   between 
t'   and   t1   -f t  is  denoted   by A t,   the movement   of   the  A*-point   is   shown  by 
a   group     of  loci which   are  drawn  in  the   time   interval   t*, 

f* t+Ai. ,     ^ 
(11.3) 

In the D*-domain, a part domain  aving an infinitesimal volume dQ* 
around a fixed point (r, 6 , $ )   is taken.  By letting the total sum of 
the infinitesimal time intervals when the A*-point passes through this 
part domain be denoted by 

oLt*(x.6J*)> (11.4) 
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the following limiting value, 

f'*(rA<»c(Q*~/^{'tt*(rjej*)/t*] 
t-*oo "-/ -» (11.5; 

can  be  determined. Of  course,   as   in  the  case  of   the Reynolds   equations, 
the   limiting  value in   (11.5)   is  assumed   to   be  determined   definitely 
independent   of   the beginning   time   t1.     For   brevity,   t1   shall  be   replaced 
by  0  hereafter. 

P*  defined   by   (11.5)   can be  regarded   as   a   function  of  r, ^, and   y 
in   the  D*-domain.      It   has   the dimension  of   an  inverse of   volume,   and   the 
relation 

(11.6) 
D* 

holds.  Clearly, P* (r, O ,   f )   is   a  probability-density function by which 
the frequency of the existence of the A*-point is expressed in the D*- 
doma in. 

In  the  case  of  an   ideal   two-dimensional   vortex chaos  motion with   all 
the   vortex  filaments   parallel   to  the   z-axis,   motions  of  the  nearest   vortex 
centers   from  the A-point   on   the xy-plane  can  be   expressed   by   the  movements 
of   the   A*-point   in   the   x*y*-pjane which   is   taken   in   the  same manner   as   in 
the   three-dimensional   case.      When  a   two-dimensional  D*-domain  is   taken 
to   include  all   the   loci   of   the A^-point   and   an   infinitesimal   part  domain 
is   fixed  around   the   r,   d—point,   then  the  quantities Z^t,   dQ*  and   dt*   can 
be  defined  in   the   same  manner,   so   that  dQ*   is   an   infinitesimal   area   in 
this   case.     Thus,   the   following two-dimensional   probability-density   func- 
tion  can be  defined   as 

P*Cr;6) dQ* = sLnl^Czü/ctt*} 
(11.5') 

with   the  relation 

/ 
J*(rj6)j0*=/. (116.) 

In  actual   turbulent   flow,   the  vortex  filaments  and  the  turning 
velocity  are  in  very  complicated situations.      If   the  concept of  a   vortex 
chaos  motion  is  adapted,   however,   the  P*-runction of   (11.5)   can be  defined 
In  the  course  of  defining   the   function P*,   tue  vector V*  is   taken  as  a 
characteristic  only of   the  nearest  vortex,   and   the   effects   of other  vor- 
tices  are not  considered.      It   is another  problem whether  the actual 
instantaneous  velocity   fluctuation at  the A-point  may be equal  to V*.     At 
this   stage of  the   introduction of the  P*-function,   there  is  no need   to 
distinguish between  large  and   small   or strong  and weak vortices.     The  ?*- 
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function can  be  defined   only   if many  vortices with   their   respective   fila- 
ments   and  turning  velocities  pass  one  after  another  near   the A-point. 
The   introduction  of   the   P*-function   is  made   only   because   it may   play   a 
convenient  role   in  proceeding hereafter   to   the mathematical   formulations 
of   the  statistical   characters  of a   vortex  chaos  motion.      In  the   study  of 
a   gas,   quantitative   discussions  are made   in   the   phase   space,   which   is 
defined  by   the   generalized   location  and  momentum   jf molecules.      The   D*- 
domain may correspond   to   the  phase   space   in   statistical   dynamics. 

12.      TRANSFORMATION   OF TIME MEANS   INTO AREA  MEANS 

In   this   section,    transformation   of   the   time  means   of   the   Reynolds 
stress   (9.5)   or   the   Euler   correlation   (10.1)   into   tht   area  means   in   the 
D*-domain will   be   attempted   by  usin_g   the   P*-function   introduced   in   the 
last   section.      As   an   example,   the   u^-component, 

u^JLsdjtfdtj^ 
(12. 1) 

of   the   Reynolds   stress   is   taken.     The   D^-domain   is   defined   so   that   the 
nearest   vortices   pass   near   the  A-point  without   interruption   in   a   time 
interval   O'Vt,   although  many   excessively   repeated   time   intervals   may   be 
included   in  O/^t*.      Now   a   function   Uj (t)   is   introduced   in  OrJt*   that   is 
equal   to u   (t)   in  OrJt   and   is   equal   in   A t   to   the  mean  value  of   u^(t) 
during   the  time   interval   OA/t: 

"f ft) - 
UZ(t) ^        O'vt j 

(12.2) 

Then  the  relation 

t* t 

(12.3) 

can be easily proved. When the time progress in 0/x/1 in the integration 
of (12.1) is indicated by the movement of the A*-point in the D*-domain, 
(12.1) is written as 

ü^^Ltf^juX^Ü ety *(t\ OUt]. 
(12.4) 
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In   the  expression   (12.4),   the  variables   r(t),   & (t), and    ^ (t)   indicate 
the  movement  of   the   A*-point   in   the D*-domain,„and   the  existence   of   the 
last  variable   t  means   that at different   times   u,     does   not  necessarily 
take   the   same  value   even  at  the   same   location  in  the  D*-domain. 

—2 
In  the   integration  of   (12.4)   in   the   time   interval   O/Vt*,   when  u   (r, 

O   y (j) )   is   taken   as   the  contribution   to  u^   in  the   infinitesimal   time 
interval   dt*(r> ö,p)   of   (11.4),   it can  be   expressed  as 

In   expression   (12.5),   u   (r, Q,<p,t)   is  written  as 

(12.5) 

(12.6) 

divided   into   the  mean   and   fluctuational   parts,   in  the   time  interval   dt* 
(r, 6,<p).     The mean-square  value  of   the   fluctuational   part   is  written  as 

cteCneS)) a2.7) 

Then,   u   (r, S,d> )   in   (12.5)   is   transformed  as   follows: 

In   the  above   transformations,   all   the#limiting  values  are  assumed   to have 
definite   values.     The   first   term,      ^JTJ^ (dt* (r , d , ^ )/t*) ,   is   expressed 
by   the  P*-function   in   (11.5).     When   the   limiting  values   in  the   bracket 
are  denoted,   respectively,   by  u,(r,ö,^)   and   u     (r,^,^),   one   gets   the 
following  expression: 

ü.'(r,0tV-Pfye,4){üfreS)i-ü.?<rA*)]dL(f.       (i2 8) 

Expression   (12.8)   is  derived   by  collecting   the  parts   in  the 
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integration   (12.4)  which  pass   through  a   fixed   infinitesimal  part   domain 
around   the  r,^,fl^-point   at   different   times.      It   is   clear  by   the   definition 
of   (12.2)   that   the   function  u^(t)   of   (12.4)   is   integrable   in  O/vt*" and   the 
order   of   integration  J   dt  can  be  altered.      Therefore,   u     of   (12.4)   can  b 
expressed  by  the   following   integration  in   the whole   area  of   the   D*-domain: 

As   for  other  components  of  the  Reynolds   stress,   if  such   functions 
v, (t),   UV, (t)   and  others   ciie   taken  into  account  as   defined  by   (12.2), 
they  can   be   transformed,   respectively,   into   the  area   integral   in   a 
D*-domain  like   (12.9).      In  an   ideal   two-dimensional   vortex  chaos  motion, 
the   same   transformation  can   be made  by  toking   the   P*-function  of   (11.5') , 
Thus,   turbulent   intensity  at   the  A-point   .'ixed   in   the   field   of   flow  can 
be  expressed  by   the   following  area   integrals   in  the  D*-domain: 

(12.10) 

and 

(12.10') 

The above transformation can also be made on the Euler correlation 
(10.1). For instance, uu'-correlation at the fixed A- and A'-points is 
defined by jj- 

t-*<*      i (12.11) 

In the same manner as explained in Section 11, the P*-function in the 
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D*-domain  can  be  defined   concerning   the  A-point.     As   in   the  case  of   the 
definition  of  V*   in   (11.1),   at   the  A'-point   a   turning   velocity  vector  V'* 
due   to   the   same  vortex   as   that   taken  at   the  A-point  will   be  assumed.      Also 
the   effects  of  curvature,   elongation  and   the   effects   of  other   vortices 
near   the   intersection  of   the   perpendicular   from   the  A-puint   (cf.   Figure  21) 
shall   be   neglected.     Then,   corresponding   to   a   position   (r,   Q ,  <f> )   of   the 
A*-point   in   the  D*-domain,   the   position   (r1, Q\ (j}*)   of   the  A'^-point   is 
uniquely   determined   in   the  x^y^z^-space.      It   can  be   proved   that when   such 
a   function, 

(12.12) 

is   introduced   in  the   time   interval   0/>/i*,   expression   (12.11)   is   transformed 
into   the   area   integral   of   the  A*-point   in   the  D*-domain. 

Thus,   the  double  correlations  of   (10.1)   take   the   following   three-   or 
two-dimensional   expressions  with   a  parameter   r',   &*,  &'   determined   by  r, 
&   ,   (ft ,   and   the  vector   AA1 : 

Mr' = Iff Pfyö,»{üv't&A•f'jrW) +Üy)"Cr,0,*;r^^'j}^* 

w'= fff„P%e/)[iw/(rA?;r/6;t'Mw;YK0y;r;0jJJd<a* 

vV = Iffo*P*frj0J ViwX™ *j;J'eyi+ vü'/Cw *: rWJdUi * 

vV* fffDitp\*, tiffiCr,e */ K'eyj) ^V^'Xr^4; r^ Vjjdd* 

W* fffDtP\ 0, rfviit'&A ■*: rW) * vwf'Cr^ 4j r/o; t ')}d O* 

29 



■"'Cr c (:2.13) 

and 

(12.14) 

13.     VORTEX CHAOS MOTION  IN THE  IDEAL STATE 

The transformation from (12.1,» co (12.9) is purely mathematical. It 
holds regardless of the shape of the D*-domain only if all the time inter- 
val O/v^t in the real flow is included in O/^t*. As far as this transfor- 
mation is concerned, any ph_ysical interpretation can be given t '..U' 
functions of P* and (u^ + u^). In this section, an approximate formula 
of (12.j?) wiJA^be proposed Dy inquiring into the physical meanings of the 
terms   (u-i   + \x\   )   in   the  real   states   of  a   vortex chaos  motion. 

If   the  perpendicular  plane   is   taken   from  the  A-point   to   the  nearest 
vortex  filament   and   if   the   effects   of  other   vortices   are   neglected,   the 
turning  velocity   is   distributed  on   this  plane.     This   vector   is   distributed 
from  the   center   of   intersection  of   the   filament   to   infinity,   since   in 
fluid mechanics   a   single  vortex motion  should  have  no  boundary   in  the 
field  of   flow.      Thus,   the   intensity   and   scale  of  a   vortex motion  can ^e 
determined  relatively  by  the  form  of   the  distribution  of   the   turning 
velocity   in   the   perpendicular   plane.      The   turning  velocity V*   at   the  A- 
point  denoted  by   (11.1)   has  been   introduced   by neglecting  all   effects  of 
the   interactions   of  many  vortices.      In   the   real   state  of   vortex   chaos 
motion,   however,   the   turning movement   of  a   fluid  around   the   filament 
has  a  respective   finite  range,   and   the  effect of  a  vortex motion  does  not 
reach  an   infinitely  long distance. 

When  the  moving  A*-point   coincides with   a   fixed   point   (r, Oy<p)   in 
the D*-domain,   the nearest  vortex  filament  has a constant   relative   location 
to  the  A-point   in  the   field  of   flow.      In  this  case,   the   direction  of  the 

■V*-vector  at   the   A-point   is  constant   regardless  of   the   time   t,   but   the 
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magnitude  is  assumed  to vary generally with  time.     When V*  is   the   limiting 
value at t —><*>   of  the mean value of  the magnitude of V* in an infinites- 
imal  time interval  dt*(r,  9,  4>) y   the magnitude V* of the vector, 

*> (13.1) 

is   determined uniquely  at  the  (r,   0,   ^)-point. 

The vector V* indicates  the mean state of  the turning velocities 
which have  a constant relative location of  (r,   0,  <5)  of vortex filaments 
with respect  to   the A-point  in the  field of   flow (cf.   Figure   19).     It  is 
easily understood by  the  definition of  r,   0,   ^  in Figure  19   that x-,   y-  and 
z-components of  the mean-turning velocity  in  the field of  flow are 
expressed by 

(13.2) 

Now,   in the  fo<rmula_(12.10)  of every component  of turbulent  intensity,   the 
functions of  (u2 + u1^)   and others will  be written by introducing the 
components of (13.2) as  follows: 

(13.3) 

Then  (12.10)  becomes 
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(13.4) 

The   two-dimcns u>r:.ä 1    tormula   (, 1 2 . 10') becomes 

JJD* J      L ' **   J   J (I3.V) 

The   expressions   of   turbulent   intensity   in   (13.4)   or   (13.41)   are 
obtained   in   order   to   connect   every   component   of   the   intensity  with   the 
value   of   V*(r, d, <P )   in   the   D^-domair^.      It   is   characteristic   that   all   the 
independently defined   components   of   u   ,   v     and   others   are   expressed  with 
the   P*-   and   V*-f unctions.      Since   th.e   parts   that   cannot   be   expressed   by 
the   two   functions   are  contained   in  V*     and  others,   the   formula   (13.4)   or xx 
(13.41)   is   a  mathematical   transformation   from  the   original   definition   (9.5), 
without   any  neglect  because  of  physical   supposition. 

The   physical  meaning  of   the   terms   V*     and   others  will   be   interpreted 
in   terms   of   a   vortex  chaos  motion.     At   first,   a   simplified   case  in which 
only   the   same   kinds  of  vortices   are   produced  at  one   point   upstream will 
be   taken.      In   this  case,   when   such   a   field  of   flow   is   taken  which   is 
completely   filled  with   identical   vortex motions  having   the   same distribu- 
tion  of   turning   velocity  within   a   finite  range   around   every   straight 
vortex   filament,   then  the  D*-domain  can  be  determined   definitely without 
.'ay   repeated   time ^ t.      In  such   an   idealized  ca^e,   V*  means   the   turning 
velocity   of   every  vortex motion,   and   V*     and_others   become   zero.     By   the 
relation   (13.2),   the   formula   (13.4)  without V*     and   others holds   exactly 
in  this   case. 

In   the   real   state of  a  \  .rtex chaos motion,   a   similar   image of 
situations   cannot  be  adapted.      Even   in   the   simple  case   of  a   decaying 
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turbulent   flow   in   which   only   the   primary   vortices   produced   just   behind   an 
obstacle   body   are   taken   into   account   with   the   cascade   phenomena   neglected, 
every   turning   velocity  cannot   be   assumed   to  have   an   identical   distribution 
around   the   filament.     At   a   place   far   from   the   filaments,    effects   of   their 
interactions   may   be  conspicuous,   and   the   situations   in   the  middle  of   two 
filctnents   may   be   especially   complicated.      Of  course,    there   is   no   boundary 
betv.'een   two   vortex motions.      Moreover,    the   elongation   or   curvature  of 
filaments   is   neglected   in   the   definition   of  V*  of   (11.J^).      Thus,   in   the 
expression   (13.3),   some   nonzero   values   must   remain   in   V*     and   others, 
corresponding   to   an  arbitrarily   elected   D''r-domain.      By   cne   above  dis- 
cussions,   V*x   and   others  may   be   regarded   as   the   fluctuationa 1   terms 
caused   by   the interactions   of  many   vortices  or   three-dimensional   character- 
istics,   while   V*   is   the  mean   term   of   turning   velocities. 

The   transformation   from   (9.5)   to   (13.4)   is   independent   of   the   shape 
of   the  D'f-domain  only   if  the   time   interval   CWt   is   included   in  (Wc*. 
However,   what   values   the   fluetuational   terms may   take   depends   largely 
upon   the   shape   of   the  D^-domain.      A  D*-domain will   be   taken   so   that   the 
repeated   time   intervals   At   may   be   as   small   as   possibl^e.      Then   the 
fluctuationa1   terms  will   be   far   smaller   than   the   term   V*     caused   by   their 
original   turning   velocities. 

In   a   vortex  cha£s  motion   that   consists  of  one  kind   of   vortex,   if   the 
fluetuational   terms   V*     and   others   are   neglected,   expressions   (13.4)   and 
(13.4')   become xx 

w^= f/f«Pfyet)^**^^) cwe^tceat ata*. 

and 

uv=//p*P*Cno)y**(K0)'<^0^0*&* (us.) 
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Expression (13.5) or (13.5') is no more than a mathematical transformation 
from (9.5) but is an approximate expression of the relation, founded on 
the supposition that the intensity of turbulent flow is caused by only 
the mean characteristics of vortex chaos motion.  Such a simplified state 
as written by (13.5) shall be called an ideal state of vortex chaos motion, 
while (13.4) is ♦•he description of the real state of the motion. 

In the statistical dynamics, the concept of an ideal gas is intro- 
duced in which only the collision motion of every molecule is taken into 
account by neglecting the effects of their rotations and interactions. 
Quantitative discussions are made chiefly on this idealized state.  The 
concept of an ideal state of vortex chaos motion may coi-T-espond to that 
of an ideal gas. 

In consideration of the nondecaying turbulent flow along a '»all, many 
kinds of primary vortices produced everywhere upstream must be treated. 
In the stuiy of the cascade phenomena of the decaying turbulent flow, the 
situation is the same.  In such a case, it is desirable to d fine the P*- 
and V*-f unctions, respectively, for the same kind of vort_ices.  When 
different N kinds of vortices pass near the A-point, the P*-  and V*- 
functions can be defined in the same manner as in (11.5) aAd (13.1)1in 
the D*-domain for an i-th kind of vortices. 

i 

When 

n*iLpt*<t nr * (13.6) 

is written,   P* means  a  nondimensional  ratio by which   the   i-th  vortices 
are mixed  in  all kinds  of  vortices,   and  the condition   (11.6)  is expressed 
by 

W (13.7) 

Wh^n the   transformation  from   (12.1)   to   (13.4)   is  applied  to  every 
kind  of   vortex,   the real   expression of  turbulent   intensity  in this  case 
is  given  by 
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^ 

(13.8) 

When  every D^-domain   is   elected   in  the  same manner  as  in  (13.5),   the   ideal 
expression is   obtained   as   follows; 

^ = J> >C^ P*^* *> *) ^^ ** *)**" G£*1* '*****ota*. 
(13.9) 

The  Euler  correlation  at   the A-  and  A'-points  of  x,   y,   z  and  x',   y', 
z'   has  been transformed   into  the area  integrals   of   (12.13).     When  the 
following   relation 

(13.10) 
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1 

is given, the real expression in the case consisting of one kind of vortex 
is written as 

tt*~ ///tP%ei*){v*(r,eS)\/*(yjG:*') + 

(13.11) 

and   in   the  case  of   several   kinds   of  vortices,    it   is 

A/ 

Ü7Z'-IT ULpZ(reS)[vZ(rA4) vfCrX*') -h 

(13. 12) 

In   the   ideal   state,    the   following   general   expressions   are   derived 
by   neglecting   the   fluctuational   terms   in   every   D*-domain,   defined   in   the 
same  manner   as   in   (13.5): 

A* 
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(13.13) 

In   an   idealized   two-dimensional   case,    they   are   reduced   to 

r'o} 

(13.13') 

14.      CHARACTER OF A  VORTEX MOTION 

In   the  previous   sections   from  11   to   13,   mathematical   formulations   are 
given   to   the  Reynolds   stress   in order   to  make   it   convenient   to   introduce 
physical   assumptions   of   the   vortex  chaos   motion.      These   formulations   are, 
so   to   speak,   statistical   kinematics  of  a   vortex  chaos motion.      Now __ 
discussions will   be   continued  on  the  physical   grounds  by which   P*,   V*, 
and   other  functions   shall   be  determined   in   the  D*-domain. 

The  real   expressions   in   (13.8)   or   (13.12)   contain  the  fluctuational 
terms   of  V*   .   and   others   in   addition  to   the   P*-   and  V*-functions.        It   is xx i 
too  difficult,   however,   to   presume  characteristics   of  these   fluctuational 
terms   caused  by   interactions   of many  vortex  motions.     The  presumption 
may   be   almost   impossible  unless   unsteady   solutions   of  the Navier-Stokes 
equations  are  obtained   for   a   complicated   vortex  chaos  motion.      Approximate 
expressions  of  an   ideal   state  have   the   characteristic   that  quantitative 
discussions  can  be   de/eloped   depending  upon  only   the   two   functions   of  P* 
and   V*  whose  physical    leanings   are  not   too   difficult   to be defined. 
Particularly,   the  V*-function  concerns   the  mean  state of   the   turning 
velocities  of many  vo.tex motions with   the   elongation  and  curvature  of 
filaments  neglected,   and   the   functional   form  can  be   studied   in   the   field 
of  hydrodynamics.      In   this   section,   some   theoretical   results   already 
obtained   in hydrodynamics  on   the  state  of  one   vortex motion   in   a   fluid 
(reference  27)  will   be   related. 
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In  the  ordinary  case where  the Reynolds   equations   (9.6)   can  be 
adapted,   it   is  not   necessary   to  consider   the   effect  of compressibility   of 
a   fluid;   however,   the   effect   of molecular   viscosity   is  important.      If   the 
Euler   equations   of   a   perfect   fluid  are   the   foundation,   they  will   prove 
the  preservation  of   a   constant  kinetic   energy  and   of  a  constant   scale   in 
a  vortex motion.      This   is   obviously   inconsistent  with  the  real   vortex 
chaos  motion   (cf.   Figure   1).     Even  in   the  case  of   one vortex motion,   it   is 
difficult   in  viscous   hydrt Jynamics   to   decide   exactly   the   situation   of   the 
production and   the   development   of   the   vortex   filament  and   the   distribution 
of   the   turning  velocity.      However,  when   a   vortex  has  a   straight   filament 
without  elongation   or   constriction,   the   turning   velocity  retains   a   two- 
dimensional   char    .ter   in   the  perpendicular  plane  with  the  condition of 
symmetry   around   the   intersection.      Thus,   mathematical   analysis   bdsed  upon 
the  Navier-Stokes   equations   is   easily  made. 

The  problem of   a   two-dimensional   viscous  vortex motion  surveys   the 
diffusion of   vorticity  which   is   initially   concentrated   .-      one   point   in 
a   fluid.     When CO   and   r   are,   respectively,    the   vorticity  of   the   fluid   and 
a  distance   from   the   center,    and when   the   time   t   is   taken   since   the   begin- 
ning   time 0,   then   the   two-dimensional   unsteady   Navier-Stokes   equations 
with   the  condition   of   round   symmetry   are   reduced   to 

CO 

(14.1) 

by eliminating the pressure terms.  Letting 

s= rz/C4rt) 
(14.2) 

and integrating (14.1) by separating the variable in the form CO (r,t) - 
60-, (O^O (s) , the solution 

^   c*\   Jr, 77 'TTJ*   > 

(14.3) 

is derived with two constants of Co<  and o< .  By the definition of CO , 
the distribution of the turning velocity V* is written as 

V+x—frcod-r, 
(14.4) 
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J (14.5) 

Thus,  under   the  boundary  conditions 

V^rr 0 at r =  O 

V*-^0        at Y--^ oo 

the  V*-function   is   expressed  in  the   form 

V*=FoLCs)GuCt)j 

Oai = zcJTii'*y (°c^i). (i4.6) 

Expression   (14.6)   is   the  solution  of V*,   and the  functional  forms  of 
Fo(^    are  shown   in Figure  22  for  several   values  of oC •     In   the  above 
solution only   the   boundary  conditions   are   taken  into  account,   and  the 
index oc   ,   together with   the constant  Cod >  must  be  determined  depending 
on  the initial   condition  at  t = 0.     As   in  the   production of   a vortex 
motion,   the   physical mechanism has  not  been clarified at:  present.     More- 
over,   the above  analysis  concerns  only  the  diffusion of  vorticity concen 
trated primarily  at one   point.     Therefore,   this  analysis   is   not  necessarily 
appropriate   in  a  discussion of   the   production mechanism of   a vortex motion, 
and  the  determination of  the values  of oL   and C^ must  be made  by comparing 
theoretical   results  with  experimental  works. 

In  the  case  of oC -   I,   some  investigations   have been made on the   prob- 
lem of production.     When   ^x,t   is   the  circulation around  a  circle of  radius 
r,   it  is  written by  definition  as 

Expression  (14.7)   does  not contain  t   explicitly,   and at   the   limits  of  t—>0 
and r-^ oo ,   /"^o^ o    =  41x0,^.     Namely,   when  a circulation    V    is  given 
at   t = 0,  C.   is   determined as 

C, = r/tfrrr); 

(14.8) 

and the limiting value of V* is reduced to 
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(14.9) 

It is well known that (14.9) indicates the state of a vortex motion of a 
perfect fluid; therefore, it is understood that the vortex motion ofOC" 1 
tends always to take the form of a perfect fluid at r —^ 00 • 

When E 0^     is the kinetic energy of a vortex motion contained in the 
range 0/\> s , it is evaluated as 

S* 

i J (14.10) 

In the case of oC    = 1, it is reduced to 

So 

E^SnCfv^Ffads, 
(14.11) 

which means   the   invariability of  energy  independent of  t.     For  other cases 
it decreases with  t   as  seen  in   (14.10).     It  may be  interpreted   that  the 
amount  of diffused   energy  from  the  center   is  generally  less   than   that  of 
the energy dissipated  by molecular   viscosity. 

The  above  results  are principal   features which have  been clarified  in 
the case  of  a   two-dimensional   viscous   vortex motion.      In  chaotic   states  of 
vortices,   effects  of   elongation  and   curvature  of  a   vortex   filament   cannot 
be neglected,   nor can  the  interactions  of man^ other  vortices,   and   the 
formula   (14.6)   does   not  hold  exactly   for   the  V*-function.      Founded  on  the 
above  solutions,   however,   general   characteristics  of  V* may  be  presumed 
to  some  extent.      At   least,   compared  with   the   solution  of   a   vortex motion 
of  a perfect   fluid   (14.9),   it   is  appropriate   to  state   for   the  real   state 
of  a  vortex  chaos  motion  that   all   the  kinds   of  vortices   of aL   have   their 
respective  similar  distribution of  F^    expanding at   the  rate  of   v^t,   as 
seen by   (14.2),   and   have  also   the   respective  decaying   term  G^ of   (14.6). 

15.     EXTENSION  OF  THE  ERGODIC  HYPOTHESIS 

Vortex  chaos  motion means   that  many  vortices  are  carried   by   the mean 
flow   in  an  irregular   agitating  motion.      In   the  case  of  a   decaying   turbulent 
flow  behind   a   circular  cylinder  or   of  a  nondecaying   turbulent   flow  along  a 
wall,   transition  phenomena  from  the  production of vortices   to  their chaotic 
states  are  explained   circumstantially  in Chapter Two.     In  a word,   regularly 
arranged   vortices  always   tend   to become  irregular,   probably because of  the 
effects  of  viscosity,   interaction,   and   other  factors  of many  vortices.     It 
is   too difficult,   however,   to  trace   accurately  the  transition phenomena 
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based   upon   the   Navier-Stokes   equations.     At   any   rate,   the   existence  of 
such   transition  phenomena   is   true,   although   the  above   interpretations   are 
merely   suppositions   founded   on   experimental   observations.      In   this   section 
there   is   no   intention  of   further   inquiry   into   the   physical   meanings  of   the 
transition  phenomena.     Attempts  will   be made  only   to   give   a  mathematical 
expression   in   the   form of  the  P*-function   to   the  physical   concept  of  a 
regular   or   an   irregular   state  of   vortex motions. 

To  make   the  essentials   of   the  meaning  easily  understandable,   an   ideal 
case   of   the   two-dimensional   vortex  chaos motion  behind   a   circular  cylinder 
will   be   taken   first.     If  a  pair  of   vortices   just  behind   the  cylinder  keeps 
a   stationary   state,   not   being  carried   away   into   the   flow   as   in  the  case   of 
a   very   low  Reynolds  number,   the   relative  location  of   the   vortex  center   to 
the  A-point   is   invariant   and   independent  of   the   time.      The  magnitude  and 
direction  of   the   turning  velocity V*   at   the  A-point   defined   by   (11.1)   are 
invariant,   and   the  variables   r   and    Ö     in   (11.2)   are   constant   for   the   time. 
Therefore,   the  A*-point   having   the   coordinates   determined   by  r  and   0   does 
not  move   in   the   x^y^-space.      If   a  D*-domain   is   taken with   a   finite  area 
around   the  A*-point,   the   P^-function  defined  by   (11.5')   takes   the  value  of 
infinity   of   the   second  order   at   the   A*-point,   and   in   another   area   in   the 
D*-domain,   it   becomes   zero. 

If   the  vortices   separated   from  a   cylinder  keep   a   regular  flow  pattern 
of   the   theoretical  Karman  vortex   streets,   the  V*-function  at   the  A-point 
has  a   cyclic   character  for  every   vortex motion  in   the   street,   because 
every   vortex which  has   the   same   distribution  form of   the   turning  velocity 
passes   near   the  A-point   in   the   same  way.     Therefore,   in   the  D*-domain  the 
A*-point   repeats   the   same  motion  along one   locus  determined   by  r(t),   0 (t) 
of   (11.2),   and   the  P*-function   takes   the  value  of   infinity  of   the   first 
order   on   this   locus  and   vanishes   in   another  area.     When   the  vortices   on 
the  opposite  side of  the  Karman  streets  are  taken  into  account,   two  loci 
must  be   considered   in  the  D*-domain. 

When   the  arrangement  of  vortices   in  the Karman  streets  are disturbed 
as   they   are  carried  downstream,   V* has  somewhat  different  characteristics 
for  each   vortex,   and  the  A*-point  does  not necessarily  iepeat  the  same 
motion   in   the  D^-domain,   because   there  is  a  uniform relation as mentioned 
in  Section   11   between  the motion  of   the A*-point  and   the  variables  r,   Q 
of   (11.2).     Thus,   the P*-function may  show a continuous   function which has 
the  highest  density on  the  locus   in   the case  of  the  Karman  vortex  streets 
and  has   some breadth  of  the distributions  on both  sides.      It  is  easily 
assumed   that  the more  irregular   the  Karman vortex streets  become,   the more 
widely    •"he   P*-function  distributes   in   the D*-domain. 

In  general,   the  following correspondence can be  pointed  out between 
the physical  concept  of  regularity or   irregularity  of   the  arrangement 
of  vortices   and   the mathematical   form  of  the  P*-function.      In  the  case  of 
a  stationary vortex motion just  behind  a cylinder,  which   is   the most  regu- 
lar  arrangement,   the  P*-function  takes   the  form of Dirac's  delta  function 
of  the  second  order in  the D*-domain,   and  in  the  regular   flow pattern of 
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the Karman vortex streets, it takes Dirac's delta function of the first 
order.  As the Karman vortex streets lose regularity in the arrangement, 
P* takes the form of a continuous function which has its peak at the 
position of the delta function of the first order.  As the regularity 
decreases and the irregularity increases in the flow pattern of vortices, 
the range of a continuous P*-function becomes wider in the D*-domain with 
a low peak.  At the limit of the most irregular state of a vortex chaos 
motion, the P*-function is assumed to be constant in all the D*-doniain 
corresponding to random values of r and G .     It may be concluded that as 
the physical concept of irregularity of a vortex chaos motion increases, 
the P*-function changes the mathematical form from a singular type of the 
delta function to the simplest functional form of a constant.  Figure 23 
shows a conceptional diagram of the above explanations. 

Transition phenomena from the production of vortices to their chaotic 
states of turbulent flow are widely observed in many cases of turbulent wake 
behind a lattice,   turbulent flow in a pipe, turbulent jet, turbulent 
boundary layer along a wall and others.  If detailed observations are made, 
some different characteristics may be found case by case.  It can be said, 
however, that in all cases the P*-function in a three-dimensional D*-domain 
tends to take a more simple form, as a regular flow pattern of vortices 
develops into an irregular chaotic state.  Furthermore, it is not easy to 
assume that an irregular chaotic motion of vortices reduces again into a 
regular pattern.  Namely, the P*-function, characteristically, always tends 
to take a simpler functional form going downstream, and the process is 
not reversible.  Thus, in all the turbulent flow of a vortex chaos motion, 
the following characteristic of every P^-function of (13.6) can be 
obtained: ^ 

(15.1) 

In  general  statistical   studies   of chaotic  phenomena,   other  than   the 
vortex chaos  motion,   the characteristic of   irregularity  or  complexity has 
been usually  expressed   in a  probability-density  function of  the phenomena. 
In a  chaotic  phenomenon which   takes  many kinds  of   situations   for  the  time, 
such a  probability-density  function may be  introduced which will   indicate 
every  kind  of   situation,   like  the  P*-function  in  the  D*-domain.     If  all 
the causes which make  the phenomenon  take on different  characteristics 
are  independent of each  other,  without any  specially  distinguishing causes, 
this  phenomenon usually  shows   the  character  of   "irregularity"  or   "complex- 
ity".      In  this  case,   the probability-density  function  shows   the character- 
istic  of  uniformity.     On  the  other  hand,   if  all   the  causes  are  identical, 
the phenomenon  takes  the  "regular"   state independently of   the  time  attrib- 
uted   to   this  cause,   and   the  probability-density  function  takes  a  singular 
form of  the  delta  function.     Even  in  the phenomenon  of  an  irregularity, 
if  the  causes   are  representative ones,   the  phenomenon  shows   the character- 
istics   of  some  regularity,   and   the  probability-density  function  takes  the 
form of  a  nonuniform but  nonsingular  continuous   function.     Namely,   if  an 
appropriate  probability-density   function is  defined,   existence of the 
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above  correspondence between  the physical  concept  of   irregularity  and   its 
functional  form can always  be pointed  out.     This may  be an essentially 
important  fact when statistical  characteristics  of  chaotic  phenomena   in 
many  cases  are  studied. 

In  the case of a  gas,   it  is well  known  that as   the absolute  tempera- 
ture  rises  from zero,   a   system of molecules  changes   the  state  generally 
from a   solid  to  a  gas.      If   this   transition phenomenon  is considered   in 
the  phase  space,   it  can be  found  that  the probability-density  function 
changes   from the delta   function  to a  simple  continuous  function  and,   still 
further,   to  the  simplest   functional  form of  a  constant.     Detailed  explana- 
tions   are  given  in Section  3. 

In  the  state  of a   gas,   the  probability-density  function which   indi- 
cates   the   situation of  molecular chaos motion distributes uniformly  in 
an  energy-constant  domain   in  the phase  space.      In  statistical  dynamics, 
this   characteristic  is   called   the Ergodic hypothesis   and  is  taken  as   a 
foundation of  the  theory.     Furthermore,   the   irreversible process   in which 
the   regularity  tends   inevitably   to become  irregular   is  serious   according 
to  the  Entropy-increase  principle.     In other words,   the Ergodic hypothesis 
in   statistical  dynamics   is   a   specia1   case of  the  above-mentioned  general 
characteristics  between  the concept of  irregularity  and  the probability- 
density  function,  which   is   adapted only  to  the  case  of  the most  irregular 
chaotic   states  of molecules.     It  is  thought  chat   the  physical  principle 
of  the Ergodic hypothesis  can be  introduced  to  other  chaotic phenomena   as 
well   as   to  the molecular chaos  motion.     Also,   according to  the  degree  of 
irregularity,   it  is  appropriate   to assume  that   the  probability-density 
function  takes  the  form of  a   simple continuous  function other  than a  con- 
stant.     The expression   (15.1)   is  that which   is  extended  from the physical 
principle of  the Ergodic hypothesis  in statistical  dynamics  and  is  applied 
to  the  case of a  vortex chaos motion as  a  generalized  expression. 

16.     VORTEX CHAOS MOTION  IN  STATISTICAL EQUILIBRIUM 

The regularity characteristic of a  vortex chaos motion always  tends 
to become  irregular.     In  the  final  state where  the  P*-function  Is  assumed 
to distribute uniformly   in  the D*-domain,   this chaotic  state of vortices 
is  unable  to become more  irregular and  also does  not  revert  to a more  regu- 
lar  state.     In the  chaotic  motion of N kinds  of  vortices,  a  following 
nondimenslonal probability-density function for an i-th kind of vortices 
will  be  taken, 

'14/ 'A, *** / rjU   > (16.1) 

where P*  Is given by  (13.6)  and QJ Is  the volume of  the D*-domain.     If  the 
P* -function has  the condition 
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^J= /> 
(16.2) 

it  can be  said  that   the   i-th  vortex chaos  motion  is   in   the completely 
irregular   state   (cf.     Figure  23-D). 

As mentioned  in Chapter Two,   the  real  vortex chaos motion usually 
consists  of many kinds  of vortices with different  conditions  of  produc- 
tions.     If   the  idealization   of   (16.2)   is  adapted   to  every kind  of  vortex, 
such   a  chaotic motion  of  all   the   vortices   is   taken   as   a  completely   irreg- 
ular   vortex  chaos  motion.      Furthermore,   as   seen   from   the  physical  concept 
of   a   vortex  chaos  motion,    (16.2)   holds  not  only   at   one  p^int   but   in   a 
finite   range  of  the   field   of  flow.     The  range   of  an   idealized,   completely 
irregular   vortex chaos  motion with   the  condition   (16.2)   for  all   the   values 
of   i  will   be  called   shearless   turbulence.      The   shearless   turbulent   flow 
behind   a   lattice   explained   in Section       is   appropriately idealized  by   the 
shearless   turbulence.      In   the   chaotic     Jtion  of  N  kinds  of  vortices,   if 
at   least  one  kind  of   i-th   vortex  does  not  have   the   condition  of  complete 
irregularity   (16.2),   this   vortex  ■ haos  motion  as   a  whole  shall   be  called 
shear   turbulence.      In  the  decaying  shear   turbulent   flow  behind   a  circular 
cylinder mentioned   in Section  6,   the primary   vortices   produced   just   behind 
the  body are considered   not   to  be  adapted  by   (16.2),   because  scales   of 
these  vortices are not   small  compared with   the  breadth  of  the   turbulent 
wake.      The   turbulent  wake     is   an   example  of  shear   turbulence. 

Many  cases  of  incomplete  irregularity  are   seen   in  the  real   vortex 
chaos  motions of  turbulent   flow.     Exactly  speaking,   these vortex chiios 
motions  usually tend   to  become more  irregular  downstream,   and   the P*- 
function cannot retain  a   constant   functional   form.     However,   the  change 
in  the  statistical  states  of  a  vortex chaos motion  along  the   flow  is   not 
as   rapid  as   in the case  of  a  molecular chaos motion.     Therefore,   in   the 
statistical   study of  turbulent  flow,   such  an  idealization is  preferable 
such   that the condition 

P.*    =  stationary continuous  function  in  D* (16,3) 
A* i 

holds   along  a  finite  range  of  flow.     An  idealized   state  in which   the 
functional   form of P^  is   invariant  regardless  of  the   time and   location  in 
the   field  of  flow  is1said   to  be  in statistical   equilibrium.     Expression 
(16.3)   or   (16.2)   is   the   condition  of  statistical   equilibrium.     Statistical 
studies  of  the real   vortex chaos  motions   in  the   following chapters will   be 
made  on  this   idealization  of  statistical  equilibrium. 

In molecular chaos motion,   the mean-free  path  of  the molecules   is 
far   smaller   than the macroscopic   length  as mentioned   in Section  1,   and 
statistical   dynamics  of  gases  chiefly treat  the  completely  irregular   state 
corresponding  to   (16.2).     When  a molecular  chaos motion  is  not   in  the 
completely   irregular  state,   it  usually  shows  a   strong   tendency  to  change 
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into   this  state,   and   the   assumption of  a   statistical  equilibrium  of  incom- 
plete  irregularity   is   inappropriate.     It   is   important   that   the  problem  is 
studied  as  a   transition  phenomenon  into   the  corpietely  irregular   state. 
The   statistical   interpretations  of  the  Entropy-increase principle   in 
statistical   dynamics  were  made  from   this   point   of  view. 

In vortex  chaos  motion,   every vortex has  a  macroscopic  scale  and 
different  situations.     When every vortex  scale   is   far  smaller   than   the 
breadth of  vortex  chaos  motion and   the   interactions  of many surrounding 
vortices have  no directional   effect,   the   idealization of  the  complete 
irregularity   (16.2)   is   adaptable.     When   the  vortex scales  are  comparable 
with   the  breadth   of   the  chaos motion,   some  directional   effects   remain   in 
the   interaction of  vortices,   and  it  is  difficult   for all   vortices   to come 
into   the complete   irregular  state   (16.2).     The  idealization of  an  equi- 
librium state not   in  the  completely  irregular  state   (16.3)   is  more  appro- 
priate  in this  case. 

Since  the  technique  of a hot-wire observation was  completed   (reference 
15),   the opinion has  been widely  supported   that  unsteady  flow with  a 
regular velocity  fluctuation is not  a  turbulent   flow,  but   it  is   turbulent 
if   the  fluctuation  is   irregular   (cf.   Figure 4).     This consideration has 
provided  the basic  physical  background  for many  researchers   to  participate 
in   the  study of  turbulent   flow.     However,   this   is  not expressed   in  the 
Reynolds  equations   (9.6)   or  in the Euler  correlations   (10.1),   and   few 
attempts  have  been made   to   introduce   this   concept  definitely  into   the 
basis  of  statistical   theories of  turbulent  flow.     As a mathematical   founda- 
tion  of  the  analysis,   one must depend  solely  upon  the Reynolds   equations, 
which   in themselves  are not mathematically conclusive. 

In Section  12,   the  Euler correlation of  time means has  been  trans- 
formed  into  the  area means   in  the D*-domain by   introducing  the  P*-function. 
The  purpose of  this   transformation has been  to make  it easy  to   introduce 
the  basic hypothesis  of general  statistical  physics  into  the study  of 
turbulent  flow.     The  assumption  (15.1)   is   that   in which  the physical 
meaning of  the Ergodic  hypothesis  in  statistical  dynamics  is  extended  and 
applied  to  the  vortex  chaos motion of  turbulent  flow.     The conditions 
(16.3)   or   (16.2)  denote  the  special  state  of  a   statistical  equilibrium 
which  corresponds  to  the   stationary  state   in hydrodynamics.     This   state- 
ment   is made only  to  avoid   the difficulties  of   the  foregoing  statistical 
analysis. 

In  the  field  of hydrodynamics,   if  the Navier-Stokes  equations  were 
solved  under  the given  initial  and  boundary conditions of  the  complicated 
flow  of a  vortex chaos  motion,   the  state  of  every  vortex motion  could  be 
determined  as  a   function  of  x,   y,   z,   and   t   in   the  field  of  flow.     Then, 
the   P*-function in  the  D*-domain can be derived   from the definition   (11.5). 
As   for  the Vv'-function,   the   functional   form can be determined more 
accurately than  the  presumption of  the  solution of  a  single  vortex motion, 
and   the  fluctuational   terms  V*xand  others   can  also be derived  from  exact 
solutions.     At  present,   however,   it  is  almost   impossible  in mathematical 
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treatments  to get  such a  nonsteady solution under  the complicated condi- 
tions  of  a vortex chaos  motion.     In the transition phenomena  from the 
production of vortices   to  their chaotic motions,  only a few cases  of  the 
formation of a pair of vortices  just behind a circular cylinder and of 
the  stability of the Karmin vortex streets  have been proved based upon 
the  equations of motion  In hydrodynamics.     Discussions  founded on  the  P*- 
functlon In this chapter  have  essential meaning  in the introduction of 
the basic  statistical  hypothesis made independently of hydrodynamics,   to 
avoid the difficulties   in obtaining nonsteady  solution of hydrodynamics. 

In statistical dynamics,   some attempts  have been made to  prove  the 
Ergodic  hypothesis mathematically based upon Newtonian dynamics.     One 
would  like to expect  that  the assumptions  of  the P*-function could be 
derived directly from the Navier-Stokes  equations  in the near  future.     At 
that  time,  this statistical  theory of turbulence may be included as  a 
principle in hydrodynamics. 

1 
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CHAPTER FOUR.     SIMILARITy  THEORY  OF  THE  ISOTROPIC  TURBULENCE 

17.     CONDITIONS  OF HOMOGENEOUS AND ISOTROPIC  TURBULENCE 

Now the case  of  Che shearless   turbulence of decaying  turbulence 
(reference  18)   shall  be considered.     The  shearless  turbulence  is 
defined as  a vortex chaos motion in which the condition of complete  irreg- 
ularity   (16.2)   is   adapted to all  the N kinds  of vortices.     In  the  shear- 
less   turbulence,   consider  a special   case  that  has a constant  mean velocity 
in the  field of  flov.     Then,   the vortex chaos  motion has   the conditions 

*?* = /_,   _ ^ = '.-z.- ■ ■"-. 

This kind of vortex chaos motion can be taken as th^ simplest case from 
both statistical and hydrodynamical points of view.  This idealized vortex 
chaos motion is applicable to the turbulent ^low behind a grid put in a 
uniform flow of a wind or water tunnel.  The flow pattern shown in Figure 
1 may be regarded as a two-dimensional example of this case. 

The condition P,Jü -  1 means that all tho vortices are in the com- 
pletely irregular state everywhere in the field of flow.  Moreover, the 
condition indicates that the mean flow gives no effect of the mean pressure 
to the vortex motions in it.  Thus, in addition to the growing effects of 
vortices caused by the molecular viscosity, the mean and fluctuational 
terms V^ ^XXL  

an{^ other similar terms in the expressions of the real state 
(13.8) are independent of the locations in the field of flow.  Namely, 
besides the variation along the x-direction, mean states of the velocity 
fluctuation are uniform in the field of flow.  This is the same i^ the 
state of flow usually called homogeneous turbulence (reference 28). 

In order to retain the state of a shearless turbulence, breadth of 
the vortex chaos motion must be far wider than the scale of individual 
vortices in it, as mentioned in Section 16.  In other cases besides a 
uniform flow, effects of the pressure gradient of the mean flow cannot be 
neglected on the individual vortices, and it is also difficult to give a 
uniform effect in the whole field of flow.  In addition to the case of a 
uniform flow, a homogeneous turbulence is not found which holds in the 
wide region of a real state of flow.  In the case of shear turbulence, 
the shearing stress caused by an incompletely irregular arrangement of 
vortices gives a distortion to the mean-velocity profile even if the 
undisturbed flow upstream is uniform, and the condition of homogeneous 
turbulence cannot be adapted.  This is the same for the nondecaying turbu- 
lent flow along a wall. 

In the case of the completely irregular vortex chaos motion in a 
uniform flow, characteristics of the individual vortices In the time means 
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are constant,   regardless of direction  in  the  field of   flow.     Namely,   the 
distribution  of   the mean turning  velocity  of   the  vortices   is   symmetrical 
around   the   filament,   and  the  inclination of   the   filament   is  also completely 
irregular  in  a   three-dimensional   space.     Therefore,  when  the  variables X, 
0,  • of  (11.2) which represent   the orientations  of   turning  velocities 
near  the A-point are  taken  to be   the polar coordinates  of   the  A*-point  in 
the x*y*z*-8pace,   then the A*-point moves  about   in the  completely  Irreg- 
ular state near  the origin,  and  In the distribution of  the  probability- 
density  function P*,   no directional   effects  remain.     Thus,   when  a  spherical 
D*-dcnnain  la  taken around  the origin of  the x*y*z*-space^we can  suppose 
that  the mean  and   fluctuational   turning velocities     TTj wx*. *  and  other 
like  terms  have  no directional  effect.     Therefore,   the   following conditions 
result: 

■i= /JXJ  ■-   M. (17-2) 

In spherical coordinates, an infinitesimal volume dQ* is expressed 
as 'Tjfafd^'rAP'if'     Thus, in the case of a vortex chaos motion, expressions 
of the real state of flow in (13.8) are written as the following summations 
of Integrals In every spherical D*- domain, 

RJ*
1
 tr 

*'* Hi U (17.3) 

where Q* and R* are  the volume and the radius,  respectively,  of  the D*- 
domain.    For the mean value of        tI*V      and other like terms,   expresiions 
similar to   (17.3)  can be derived.     These expressions,   including  (17.3), 
easily lead  to the following reaulta: 
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-$**& = l^M-U. ä ... ä ö (17.4) 
•  • • 

The  above   derivation   is  made   for   conditions  of   the   real   state  of   flow, 
and   the  characteristics  of   (17.4)   are  no more  than   those  of   the   isotropic 
turbulent   flow  defined   by  G.   I.   Taylor   (reference   13).      Namely,   conditions 
(17.1)   and   (17.2)   of  a   spherical   symmetry   in  the  D^-domain  have  proved   the 
condition   of   the   isotropic   turbulent   flow.     Thus,   it   can  be  concluded   that 
the  statistically  and  hydrodynamically  simplest  vortex chaos motion  is 
the  homogeneous   and   isotropic   turbulence. 

In Taylor's  definition of   isotropic   turbulence,   an  irregularity of 
the velocity   fluctuation is not   implied  explicitly.      In  the  real  expression 
(13.8),   his   definition  corresponds   to   the   assumption  of /^Tlj£ ClT*^  P-Jf  C'lO •• • 
instead  oi fä^ z J   y^c  C7~)*»»-     Although his  definition  has  a wide  field   * 
of application,   it   is  doubtful  whether  such  an  isotropic   turbulent  flow 
really  exists   having   the condition   /Tf^f^ instead  of       p*, - f 

Probably,   the  definition  of   isotropic  turbulence may have  been 
introduced   according   to   the  physical   image  of  such   a   vortex  chaos  motion 
as  shown  in Figure  1.     But,   in order  to develop  theoretical   studies based 
on  this   definition,   another  condition  of £7=Ä (constant)   must  be  assumed. 
In our  statistical   theory of  turbulence,   it  shall  be  assumed   that  the 
statistical   and  hydrodynamiccl   uniformities ffa s/and  Z^*^/» bring  forth 
the  conditions  of  the  homogeneous   and   isotropic   turbulence. 

18.     CHARACTERISTICS  OF THE CORRELATION  FUNCTIONS 

In  the  homogeneous  and  isotropic   turbulence,   components  of   the mean 
and   fluctuational  velocities h.ive  simple properties  as   expressed  in  (17.1) 
and   (17.4).     Owing  to  their  properties,   the  Reynolds  equations  and   the 
EuleT-  correlations   in Sections   9   and   10 become  simple  expressions. 

Components  of  the  Euler  correlation of  velocity   fluctuations   at   two 
points  A  and  A'   of coordinates  x,   y,   z  and  x',   y',   z*,   respectively,   are 
generally  expressed   in   the  tensor   formula  K of  (10.1).      In  the  case of 
the homogeneous  and   isotropic   turbulence,   intensities  of   the  velocity 
fluctuation  are  constant across   the mean  flow.     As mentioned  previously, 
the Euler  correlation has a  nonzero   value   in a  region having  a   length 
approximately  equal   to  the mean  scale  of  the  individual   vortices.     Over 
such  a  small   distance  along  the  flow,   variation of  the   intensity  is 
negligible, and  all   the  denominators   in   the   formula K can  be written as 

It2. 

The  numerators   in K have  the  general   formulas  of   (13.13).     Because 
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of the completely irregular vortex chaos motion in a uniform flow, they 
can be expressed by the summations of integrals in spherical D*-domains 
of the A*-point as in the formula (17.3) of the intensity.  As mentioned 

^      in Section 12, when the fixed A- and A1-filaments are transmitted into 
the x*y*2*-space, local curvatures of vortex filaments are neglected as 
shown in Figure 21, and for the same kind of i-th vortices the coordinates 
(T'»  •' *r)  of the A^-point in the D*-domain are determined uniquely, 
depending upon the position of (f, 0,^) of the A*-point.  Thus, in this 
case of flow, the Euler correlation (10.1) can be expressed as follows by 
taking a spherical D*-domain of the A*-point: 

-»•■,      o o o 

i*'        o o 0 

i*\*- o o » 

**/        ooo 

ft 

•*■*' o e O 

(18.1) 

In the  expressions  of   (18.1),   variables  r', ö'  fare dependent  up 

50 



T, ^, r of   the A*-point.      However,   because of   the  complete  irregularity 
of   relative   locations  of   the   vector ^Ä1   and  the   vortex  filaments,   corre- 
sponding  to  one  location of A*tt* in   the x*y*z*-space   the  reversed  orienta- 
tions  reflected  to  every  y*z*-,   z^x*,   x*y*-plane  always  exist.      If A-   and 
A'-points   are  on a   line parallel   to   the  x-axis,   many  components   of 
correlation become   zero by  cancelling  the   symmetrical   positions   in  the 
spherical   D*-domain,   except   the   following   two components: 

CiFy'j/u2-* (u*?)/u2y . 

(18.2) 

The   discussion may  be  easily understood  by  taking  a   two-dimensional case 
of   the  vortex chaos  motion.     In  th3  case  of arbitrarily  located  A-  and   A'- 
points  in   the   field   of  flow,   the  vanishing of the  remaining  components 
besides   f  and   g  is   also proved  by   the  feature of  a  spherical   symmetry   in 
the  D*-domain,  where   f and  g are  taken as   the correlation coefficients   of 
the  components  respectively  parallel   and  perpendicular  to   the direction  of 
At'. 

When    A-   and  A'-points  are  taken at  some locations   in  the  field of 
flow with   a  distance   J&y ,   a  correlation of  the  velocity  fluctuations   to 
their  arbitrary directions  can he  proved  as  follows,   expressed only in    ^ 
f and  g   (reference  14).     Namely,   in Figure  24,   let  the  vectors AA    and  A'Aj, 
represent   instantaneous velocity  fluctuation at   the  two points A  and A', 
and   let  the  x'-,   y'-, and  z'-axes   from the  A-point be  taken  parallel  to 
the  x-,  y-,   and  z-axes,  respectively.     Further,   let  the  three components  of 
velocity   fluctuations  at  the  A-  and  A'-points parallel   to  AA^,   perpendic- 
ular   to AA'" and  contained   in   ehe Aj^A -plane,  and  parallel   to  Ä4£ ,  be 
u,   v,   J    and  u',   v',   w',   respectively,  where B is  an  intersection  of the 
perpendicular   from   A,' -point   to   the A'AA^-plane.     The  angles   o<    ,    J& , 
and   it    are   taken as   shown  in Figure  24.     Then,   the relations  u »  u'c^^^f-f- 
V+vrfiK   and  V = (\jlc66ß+>P'4im'/ß)AM.t*o<Mt are  proved, and   this  relation follows: 

(U r'j/U * (fcödcicdö^-ha^ycfjoimjB^jö^ ^ • 
(18.3) 

Thus,   the   tensor  formula K of  the correlations   (10.1)   can be  generally 
expressed   as 
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/ $*4t.  &£} 4c4c 

K-^l i,**   fy   *& 

for ' Kx **%*%£. 

(18.4) 

Furthermore,   the  fundamental   correlations   f and   g are  proved   to  be 
related   to  each  other   (reference   14).     Namely,  when   the   time  means   are 
taken of   the  continuity  equations  at   the  A'-point multiplied   by u,   v and 
w,   respectively,   at   the  A-point,   they  are  combined   into   the   following 
formula: 

^/•'^x 
(18.5) 

In the triple correlations of   iZ1^  and other similar terms at two 
points with a distance k , only the three components h, k, and q shown in 
Figure 25 remain with other components vanished by the feature of spherical 
symmetry in the D*-domain.  As in the case of the double correlations, the 
following interrelations. 

i'-**   *"*    £'**%■ 
(18.6) 

can be derived from the continuity equations.  For the higher order 
correlations, some reduction of the expressions may be made in the same 
manner. 
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As a matter of course, functional forms of the Euler correlation 
signify the property of the scale ol turbulence.  Fundamental characteris- 
tics of the scale may be manifested by the functional form of the double 
correlations.  It is seen by integration formulas in (18.1) that at a 
short distance of k , the value of f depends for the most part on the 
small-scale "ortices, while at a long distance it depends on large vor- 
tices.  The triple and higher order correlations can be regarded as 
describing in more detail the character of the scale of turbulence. 

From the spherical symmetry of the D^-domain, it is seen that the 
fundamental double correlation f or g has a symmetrical form for positive 
and negative values of  «L  .  When a scale length such as 

Lf * JfdJr 
a 

(18.7) 

is introduced, Lf    chiefly concerns the large-scale primary vortices 
produced just behind the grid.  Let another scale length ^,x be defined 
by r 

'h^-) - - ^H 
(18.8) 

under the assumption that f can be expanded into the Taylor series at the 
origin.  As shown in Figure 26, ^r is equal to the half of the segment 
on the 'ffa-axis  cut by the parabola touching the top of the f-curve. 
Thus, ^r  designates the property of f near the origin and chiefly concerns 
the small-scale descending vortices produced by the cascade process.  /.P 
and Hf. ,   called the integral- and micro-scales, respectively, can be 
regaraed as the two general standards of the scale of turbulence (reference 
13). 

It can be proved further that the quantities f, h, andÄ are not inde- 
pendent, but are interrelated.  Namely, when the three equations of the 
Navier-Stokes equations at the A-point are multiplied respectively by u', 
v', and w' at the A'-point, and the time means are taken, they become 

^--•^txi-f';. (18.9) 

It is easily seen that f and h in formula (18.9) come from the viscous and 
inertia terms, respectively, of the Navier-Stokes equations.  The formula 
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(18.9) is the foundation for discussion of statistical quantities of the 
Isotropie turbulence, known as Karman-Howarth's propagation formula of the 
Euler correlations (reference 14). 

When the limiting value at iQztO       is taken in (18.9), it becomes 

(18.10) 

If   the   Taylor   expansion   is  possible   at   1cfs0    ,   A.        takes   the   same   form 
as   (18.8).      Formula   (18.10)   is  called   the  decaying   formula,   which  denotes 
an   interrelation  of  the   turbulent   intensity   *€   and   the  microscale     %X 
(reference   13). ' 

19.     REPRESENTATION BY  THE  SPECTRUM FUNCTIONS 

Characteristics  of   the  Euler   correlation  mentioned   in   the   last   section 
may  also  bo   represented   by   the   spectrum   functions.      For   instance,   when   the 
u-component   of   velocity   fluctuation   is   taken   at   an  A-point,   this   is   an 
irregularly   oscillating   function   for   the   time,   which  contains  many   kinds 
of   frequency  as   shown   in Figure   3.      The   intensity      If =*£*n.OSt)) ^ft) ft 
will   be  divided   into many   infinitesimal   regions  contributed   by   the   same_ 
value   of   a   frequency n.     When   the  wave   number   is   taken  as     7$, - ij't/ft»)/tSo 
and   the - contribution  toH     by   the   region between  k     and   k    + dk     is 
H E(il))otK/   ,   then   F.(%i)    is   generally  called   the   spectrum   function,   and   the 
total   intensity   is   expressed   as 

u2= a*/ ffiMA- 
(19.1) 

When   the  Fourier   transformation  of  an  instantaneous   velocity   function 
u(t)   is written  as    d>u($%J       wither iTt^L,   this   relation  is  obtained: 

and 
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av.d 

i(t)--j=fi(&)^'tcc4u. 
(19.2) 

Furthermore,   if   the   Lagr^nge  correlation  of   velocity   fluctuations   at   one 
point   for   different   times   t   and   t-k     is  denoted   by 

R^M*)-- uttitict-fa/u1. 
(19.3) 

the   following  relations, 

and 
o 

(19.4) 

can be derived by taking formula (19.1) into account (reference 29). 

In the vortex chaos motion of turbulent flow, an instantaneous state 
of the chaotic motion incessantly changes with time and position.  However, 
in homogeneous and isotropic turbulence, scales of vortices are far 
smaller than the breadth of the flow, and the mean flow gives no effect to 
the individual vortices by the pressure gradient and other forces.  Thus, 
it can be considered that in a narrow region along the flow of the same 
order of the mean scale as that of the vortices, the vortex chaos motion 
retains approximately constant situations of motion.  Namely, in the region 
of nonzero value of the Euler correlation, the function u(t) at a point 
is assumed to be transported in the same form by a constant mean velocity 
271 •  This assumption, known as Taylor's hypothesis, was introduced at 

the same time as the definition of isotropic turbulence (referencp 13). 
In accordance with this iiypotaesis, we have put a constant denominator 
in the tensor expression K of (10. 1). 

Based on this hypothesis, it is easily seen that the Lagrange 
correlation f?ilu(nt^   ^n   (19.4) is the same as the Euler correlation ^(jf^ 
at two points with the distance /Xl^mtZ/ty.     Then, the formulas in (19.4) 
can be written as 
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V-J\ 

and 

Fl(i,)--k\Mr)°~4&'<Ar 
(19.5) 

by  using  the  function   Pffn,!)  of   (19.1).     The   function   f and   F     are  quan- 
tities  which can  be  measured  by   experiment.      Figures   27  and   28   show 
examples   of  the   observed   results   on  the   relations   of   (19.5),   where  Taylor's 
hypothesis   seems   Co  be   supported   in   the  case  of   3   uniform   turbulent  wake 
behind   a  grid. 

The   above  discussions   on   the  spectrum   function  have  been made   by 
taking only  the   wave  number  k^   to  the  x-direction.     Strictly  speaking, 
however,   the Fourier  analysis  of  a velocity   fluctuation should  be  done 
with   three  components  of   the  wave number  k   ,   k   ,   and  k    respective   to   the 
x-,   y-,   z-direction   (reference   30).     The   tnree-dimensional   expression  of 
the  u-component   of  velocity   fluctuation which  corresponds   to   (19.2)   is 
written as 

^--^^u^A^^'^'^^M^. 
(19.6) 

2 
The   intensity K      is   expressed   in  the   integration  of   (19.6)   in  a   large 
volume Q,     This   representation   is  the   same   as   that   for  the   v-  and w- 
fluctuations.     Thus,   when   a   function  such  as     C      is   introduced, 

(19.7) 

and   the  following  integration, 

CO 

0 (19.8) 
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is   obtained  for   the  expression of t4    . 

Although  the   formula   (19.8)   is  similar   to   (19.1),   F3  is  clearly   a 
different  expression  of  a combination  of   the   three components  of  wave 
number.    Usually,   F^   and F3  are  distinguished  as   the one-  and   three- 
dimensional   spectrums.     It   is  proved by   their  definition  that   they  are 
not   independent  but   are  related  to each  other  by   the  following  expressions: 

(19.9) 

As  seen  in  (19.5),   the  Euler   function  f  can be related  to   the   spectrum 
function F^  or F^.     Corresponding  to   the   propagation formula  (18.9)   of  the 
Euler  correlation,   a   similar  expression of   the  spectrum  functions  must 
exist.     Namely,   when  equation  (18.9)   is  multiplied by  (JB/rf)   cos  kkr   and 
is   integrated by kr  in  O^v^^o >   it   leads   to 

00 «^ 

o o 

If OO 

Htf) = 4- fefa)^ 44r ct4r 

(19.10) 

and  the one-dimensional   spectrum F^  of   (19.5)   is   taken,   the  above  expres- 
sion  becomes 

00 
CO 

at 
At ~ 

(19.11) 

-^U
3
{H4+4JHC(4J= ~z*u[RtA%4fo4ä4}. 
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When the  differentiation process  denoted by   the  second expression  in  (19.9) 
is carried out   in  the  expression  (19.11),   the   following  formula of   the 
three-dimensional   spectrum Fo  is  obtained. 

- ^+Zufw3-.-t,u'F34* 

(19.12) 

where 

TW^   3    a(Tt 
(19.13) 

This  formula of   the  propagation of  the   spectrum function  is  often  expressed 
simply  as 

E = U-*F3j    asrU     W = ZU?W3 

(19.12') 

As is easily seen by the definitions, the terms E and W are related 
respectively to the double and triple correlation functions which are 
derived from the viscous and Inertia terms In the Navler-Stokes equations, 
respectively. 

It is mentioned in Section 17 that basic quantities of the Intensity 
and scale of the Isotropie turbulence are represented by the components 
VL   and f or h, respectively.  The three-dimensional spectrum functions 
F3 and W3 which correspond to f and h, do not have different components 
according to the x-, y- and z-directlon in the field of flow.  The 
Isotropie turbulence is that in which these fundamental quantities vary 
only along the x-direction of the flow.  In this sense, the Isotropie 
turbulence is essentially a one-dimensional flow. 

Discussions in Sections 17, 18, and 19 concern the klnematical 
characteristics of the Isotropie turbulence.  The work which we shall 
have to do hereafter is to evaluate the behaviors of these fundamental 
functions along the flow in accordance with the real states of the 
Isotropie turbulent flow.  Viewed from a theoretical principle, the 
klnematical formulas (18.9), (18.10), or (19.12) are no more than 
transformations from the Reynolds equations in the ease of the homogeneous 
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and   Isotropie   turbulence  of  the  completely   irregular   vortex  chaos motion 
in  a  uniform  flow.     Namely,   these  formulas   are  not  those which  have 
compensated   for   the   insufficiency of  some  physical  principles   in  the 
Reynolds   equations.     For   instance,   in   the  decaying formula   (18.10),   two 
independent  variables   CC    and As are   involved.     The propagation   formula 
(18.9)  of  the  Euler  correlation has   the   three  variables   Ct   ,   f,   and  h. 
The  situations  are   the   same for   the  spectrum-propagation formula   (19.12) 
having  14,  ,   F-j,   and  W-.      Even  if  the  propagation of  the  triple  correlation 
is   formulated   similarly   to   (18.9),   the   formula may  further  contain  the 
fourth correlation  and   shall  never become  a  mathematically  conclusive 
system.     Of course,   tiis   is  the   same  as   for   the  spectrum propagation. 
Namely,   the  basic   obstacle  in  the  study  of   turbulent   flow,   that   the 
Reynolds   equations   are  not conclusive  because  of  the   inertia   terms  of  the 
Navier-Stokes   equations,   has not  yet  been overcome,   even  in  the   simplest 
case of  the homogeneous   and  Isotropie   turbulence. 

20.     CONCEPTION  OF  SIMILARITY  PRESERVATION 

Fundamental   formulas   (18.9),   (18.10),   and   (19.12)  of  the   isotropic 
turbulence have   far  simpler mathematical   expressions   than  those  of   the 
Reynolds   equations.     On  account  of  the   simple  expressions,   these   formulas 
are   available,   combined  with  other  physical   assumptions,   to   investigate 
the  characteristics  of   statistical  quantities  of the   isotropic   turbulence. 
Similarity  preservation  has been  introduced   as  one of   the physical 
assumptions   in   the  previous  studies  of   isotropic   turbulence.     This   section 
will  consider   the  basic   conception of   the   similarity  preservation,   based 
upon  the  physical   interpretations  of  a   vortex chaos motion. 

It  is mentioned   that  the definition of   the  isotropic  turbulence   is 
deduced   from  the  completely  irregular  chaotic   states  of many  kinds  of 
vortices   in a  uniform mean  flow,   and   the  discussions   in Sections   17,   18, 
and   19 hold   for   these  chaotic motions  of  all   the  vortices of N  kinds. 
Now,   such  an  idealized   isotropic   turbulence   shall  be  considered  as  con- 
sisting of  one  kind   of  vortex produced   at  a   fixed  location x"0,   and 
shall   take  the  approximation of  an  ideal   state mentioned  in Section  13. 
Then,   the  representations  of the   intensity   (17.3)  and  correlation   (18.1) 
are written by  the   following  integrations   in  a  single  spherical  D*-domain 
with  a radius  R*. 
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(20.1) 

Since the elongation and curvature of a vortex filament have been 
neglected in the definition of the V*-function of (11.1), the ideal state 
of the isotropic turbulence refers to the three-dimensional and completely 
irregular state of vortices which keep two-dimensional characteristics in 
a uniform flow.  Thus, the solution (_14.6) of the viscous vortex motion 
can be taken as a functional form of V*(r) in (20.1).   By the solution 
(14.6) the extension of a vortex motion is seen to be proportional to 
^ "t, and the radius R* is appropriately chosen as 

/?*=y/4y70  y/t; 
(20.2) 

where SQ is a constant independent of t in (14.2).  From the solution 
(14.6), the function V*(r) in (20.1) can be written with a suffix o( which 
denotes the condition of production. 

S ä 4vt 
(20.3) 

In (20.3), Fo< is a function of s in the interval 0^ SQ  in the D*-domain 
Gc< is a function of the time t since the production of vortices, and is 
not dependent upon the coordinates in the D*-domain. 

Thus, the turbulent intensity in (20.1) is written as 

(20.4) 

where the first term is a definite integral in the spherical D*-domain 
with a radius R* of (20.2) and does not involve t explicitly. 

For the correlation f ££ A- and A'-points of a distance k  to the 
x-direction, the numerator uu' of (20.1) is written as 
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(20.5) 

In  the  above  expression,   s,   6,   4)  and   s1,   0',   «I1   are   the  coordinates  of  the 
A*-  and  A^-points  in  the  D*-domain,   and   the  latter  are  decided uniquely 
with  the   former  as  interpreted   in Section  12.     In  the  case  of  isotropic 
turbulence,  when  the  same  spherical  D*-domain as   in   (20.4)   is   taken and 
a   parameter   such   as 

'X 4Yt 
(20.6) 

is used instead of kx, then the first term in (20.5) is regarded as a 
function of s, 0, «I, sx in the expanding D*-domain along the flow as 
denoted by (20.2).  Thus, the correlation function f is written as 

(20.7) 

and is considered to be a function only of s  independently of t;. 

This independency characteristic also holds in the triple correlation 
For instance, the correlation h is reduced to 

y _    ll[D*täs)fas')*^*0^*4c*> 4'^ t'oL4 * 

(20.8) 

in  the  same manner  as  f  of   (20.7).     Furthermore,   in  this  case  and on 
account  of  the   spherical   symmetry,   the  integrand multiplied  by cosO*   sin^' 
is  cancelled  at  symmetrical  positions   in  the  spherical  D*-domain,   as   is 
easily  seen  in   the  two-dimensional   vortex chaos motion,   and   the value of 
h  vanishes.     This   is  the same  for k and  q,  and 

^-^=^. = 0 
(20.9) 

is  obtained.     The  above  results   in   (20.7)   and   (20.9)   are  no mere  than 
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those which Karmin and Howarth have introduced as the assumptions of 
similarity preservation in isotropic turbulence (reference 14). 

It is suggested by the above discussions that in expressions (13.9) 
and (13.13) o^f the ideal state of N=l vortices when two fundamental func- 
tions P* and V* have respective similarity characteristics independent of 
t in the D*-domain, the Euler correlations preserve their similar func- 
tional forms along the flow.  Namely, according to the physical interpre- 
tation of a vortex chaos motion, it is found that the similarity preser- 
vation in turbulent flow consists of two kinds of similarities:  a hydro- 
dynamical similarity of the V*-function which is proved by the solution of 
the Navier-Stokes equations, and a statistical similarity of the P*-func- 
tion given a priori as a statistical hypothesis.  Karmin-Howarth's simi- 
larity assumption for isotropic turbulence belongs co  the case where the 
P*- and V*-functions, respectively, have similarity conditions in their 
simplest forms. 

By integrating (20.4), the following expression results: 

o 

(20.10) 

In the exponential   formula  (20.10),   C^ is  obviously  independent  of   the 
time  t_since   the  production of  the vortices,   and  t  is   related  to   the mean 
speed U0 with 

u   = -^ Uo   ~     -j- 
(20.11) 

Namely,   (20.10)   suggests   that  the  intensity UL   should be   plotted versus 
t  instead of  x.     If  plotted versus  x,   experimental  data may  be  scattered 
with different  mean  speed U   . 

As  for  the  correlation  function,   the  propagation  formula   (18.9)   takes 
the  form of an  ordinary  differential   equation owing  to  the   features  of 
(20.7),   (20.9),   and  (20.10).     When  the  nondimensional   length. 
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(20.12) 

is taken and f is regarded as a function of  2 , (18.9) bec( :omes 

(20.13) 

where   '   denotes   d/df .     The   equation   (20.13)   is   the   same   form  as   that 
derived  by   Karman-Howarth,   and   the   solution   is   proved   to   be   expressed  as 
a   hypergeometric   function  as   follows   (reference   14): 

(20.14) 

Figure   29   shows   the   functional   forms   of   (20.14). 

The  integral-   and microscale  of     (18.7)  and   (18.8)   are  expressed  as 

izf -C^vt, CA* * so/(z*~0 . 
(20.15) 

Even if the microscale \r   is not equal to the integral-scale L , the 
meaning of a finite value of A^ may be understood by the physical picture 
of a chaotic motion of one kind of vortex in which the production of 
infinitesimal small vortices by the cascade process is neglected. 
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21.  SIMILARITY PRESERVATION IN THE INITIAL PERIOD 

In the expressions of the similarity law, the selection of the value 
of o^ concerns the condition of production of a vortex motion in the real 
flow, and the selection cannot be made from a purely theoretical point of 
view.  Investigations must be made in the light of experimental works.  At 
first, the theoretical results of (20.10) to (20.15) shall be checked by 
comparison with experimental results. 

.% In a uniform flow behind a  grid, it is easy to use the hot-wire 
technique to measure velocity fluctuations to determine the turbulent 
intensity.  Except for the transition region just behind the grid, many 
previous experimental results indicate that for a fairly long distance 
behind the grid, an empirical formula such as 

Z I 

(21.1) 

can be   adapted,   and   that   further   downstream  the  decaying  process   is  more 
rapid.     The   formula   (21.1)   is  usually  expressed  as     LC "^   oo   t,   and   is 
called   the   linear-decay   law.     Figure   30   shows  an  example  of measurements. 

In  the   real   states  of  turbulent   flow  behind  a   grid,   effects  of   the 
cascade phenomena  and  three-dimensional  characteristics  of  vortices cannot 
be neglected,   and  the idealizations  mentioned  in  the  last   section do not 
hold exactly.     However,   in a  region  along  the  flow where  the  primary  vor- 
tices which  are produced directly   from  the grid  are predominant,   the  above- 
mentioned   idealizations may have   significance. 

When   the   empirical   formula   (21.1)   is   compared with   the   theoretical 
result   (20.10),   it may be correct   to  take 

\ 

*=/. 
(21.2) 

As explained in Section 14, the solution of oC =1 in (14.6) applies far 
from the vortex center to the vortex motion of a perfect fluid.  This fact 
favors regarding the primary vortices produced by the energy of the poten- 
tial flow outside the boundary layer as those of the solution of c>< =1. 
Theoretical results (20.15) of the turbulent scales hold independently 
of the suffix o( .  However, they are also supported by many observations 
as shown in Figures 31 and 32. 

When the theoretical curves of the correlation function f in Figure 
29 are compared with an experimental measurement in Figure 27, it turns 
out that the solution of o( «1 in (20.14) is difficult to adapt to the real 
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It  is  certain,  however,   that  the  similarity assumption has not 
derived a  satisfactory result  for  the correlation or  the  spectrum func- 
tion.     In this  chapter,  discussions  are made only on  similarity  preserva- 
tion.     The  fundamental meaning of  similarity preservation must be grasped 
before  proceeding to the study of nonsimilarity.     If  the similarity 
preservation is  derived,  not  as  an assumption,   from some  fundamental 
hypotheses,   from these hypotheses  some  suggestion will  be obtained to 
guide us   in our  search for  the characteristics  of nonsimilarity. 

On  the other hand,   it  seems   that  in other cases  of  turbulent  shear 
flow,   the  approximative expression of  the similarity  law has  a more  impor- 
tant significance.    From the  standpoint of a vortex chaos  motion,   it   is 
possible  to  extend the simplest  hydrodynamical  and  statistical  similarity 
conditions  directly to  the case of  the  decaying  turbulence.     Thus,   the 
following  two chapters will  discuss   problems of  the  extended  initial- 
period  law,   and  the nonsimilarity  problems will  be  studied  later from a 
wider viewpoint of the decaying  turbulence. 
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CHAPTER FIVE.     SIMILARITY THEORY  IN   r'?E   INITIAL PERIOD 

22.      IDEALIZATION OF  THE   INITIAL  PERIOD 

As   mentioned   in  Section   21,   the  essential   meaning  of   the   law   in   the 
initial   period   exists   in   taking   an   expression  of   the   ideal   state   of   the 
chaotic   state  of   the    O^    =   1   vortices   in  their   statistical equilibrium. 
In   the   case   of  an   isotropic   turbulence,   both   the   P*-   and  V^-functions   have 
their   respective   similarity   characteristics   owing   to   the  completely   irreg- 
ular   chaotic   states   in  a   uniform   flow,   which  have   proven   the  similarity 
preservation  of   the   flow.      Further,   by  applying   a   two-dimensional   solution 
to   the   V"'-func tion,   simple   expressions  of   the  distributions  of   the   inten- 
sity   and   scale  along   the   flow  have   been  cbtained.      In  general   cases   of 
the   decaying   turbulence,   however,   the   initial-period   law  does  not   neces- 
sarily   derive   the   similarity   character,   and   expressions   for   the   intensity 
and   scale   become   somewhat   complicated. 

A   nonisotropic,   shearless   turbulence will   first  be  considered.      This 
case   of   flow   is   stil]   a   completely   irregular  motion  of  N  kinds  of   vortices, 
but   the  mean-velocity   distribution   is  not   uniform.      Because  of   the  complete 
irregularity,   the   vortex   chaos  motion does   not   bring   about  any  shearing 
stress,   and   the  effect  of   normal   pressure  caused  by   the   chaotic motion 
is   small.      Thus,   when   the   potential   function  of   the  mean   flow  is   denoted 
by    S     ,   the  condition  of   the   flow   is written  as 

?/*=/, ^ = 1,2, .. . AJj 

t/=T^' Vs 

corresponding   to   (17.1)   in   the   isotropic   turbulence 

(22.1) 

In   the   case  of   the  completely   irregular   vortex  chaos  motion,   effects 
of   the   potential   function   ^    to   the   vortex motions   are   only  to   the   direc- 
tions   of   the   x-,   y^,   z-axe^,   dnd,   as  assumed   in   a   two-dimensional   vortex 
chaos  motion,   the V*-   and   V*'-functions  are   regarded   as   symmetrical   to   the 
axes   in   the   D*-domain.      Thus,    in   the   real   expression   (13.8),   the   terms   of 
vw,   wu,   uv  vanish.     Namely,   the  potential   function  of  f (x,   y,   z)   means 
the   flow without  a  shearing   stress.      But,   unlike   the  result   (17.4)   of   the 
isotropic   turbulence,   components   of   the   intensity    IL , V  , I*/'generally 
have   different  values   in  respect   to   each  other. 

In   a  wind   tunnel,   the   air   stream  from a   rectifying  grid   is   led   to 
the   test   section  through   a   contracting  section.      Vortices   produced   from 
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the   grid may  be  mixed   into   a  completely   irregular   state,   but   they  must  be 
affected  by  the  pressure   gradient  of   the  mean   flow   in  a  contracting   sec- 
tion.     By  experimental   measurement,   the   values   of  LL, V,tA/ are   generally 
different,   although  correlation  components   uv   and  other   like   terms   vanish. 
This   case of  a  contracting  stream corresponds   to  an  example  of   the  non- 
isotropic  shearless   turbulence. 

Only   the  primary  vortices  of  o(  =   I   shall   be   taken  into   account   in 
the   shearless   turbulence.      Even  if   three-dimensional   effects   of   elongation 
of   the  vortex   filaments   are  neglected   as   in   the   case  of   the   similarity 
law   in   isotropic   turbulence,   the V*-function   is   affected   by   the   pressure 
gradient  caused   by     J   (x,   y,   z)   unlike   the   case   of  a  uniform   flow. 
According to a  given   field   of    1   (x,   y,   z),   however,   it   is  difficult   to 
derive an exact  formula  of   the V*-function   from  the hydrodynamical   equa- 
tions  of motion,   and   as   the  first  approximative  expression. 

l/*<V, *;*,*,*>) (zcJVt-*), 

3 * 

(22.2) 

will   be  taken as  an  extended  expression  of   (14.6)   in  isotropic   turbulence. 
Hereafter,   the   suffix   1  denoting  the   o^ ■   1   vorticeti  shall  be  neglected   for 
brevity. 

The condition  P^'«!   in   (22.1)  has   statistical   sjjnilarity   independent 
of  the coordinates   x,   y,   z.     On the  other  hand,   the V*-function   in   (22.2) 
does   not necessarily have hydrodynamical   similarity.     Therefore,   the 
description of  an  ideal   state based  upon   (22.1)   and   (22.2)   does  not 
generally derive  the  result  of  similarity  preservation,   although   their 
description is  based  upon  the  same theoretical   foundation as  the Karman- 
Howarth  similarity  hypothesis   in  isotropic   turbulence. 

The turbulent wake behind a circular  cylinder  in a uniform  flow will 
be  considered  as  a   simple  example of  the  decaying  shear  turbulence.     In 
the  case of  the  turbulent wake behind  a  grid,   production of  vortices   from 
a  rod  of  the grid   is  not  affected  by  situations  downstream  and   is  not 
influenced by other  vortices  produced  by  other   rods.     Namely,   the  condition 
of production of  vortices may be  the  same,   both   in  the cases  behind  a 
circular cylinder  and   in a   grid consisting  of   the  same kind  of  cylinders. 
It  is   natural   to  assume  that  the primary  vortices   in  the decaying   turbu- 
lence  all belong  to  those  of   o(   « 1. 

When the co-ordinate axes  are  fixed   as  shown  in Figure  33,   the mean- 
velocity distribution keeps   a  two-dimensional  character  in  the  xy-plane. 
The primary vortices  are  first  separated   alternatively from both   sides  of 
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Liu*   cylinder  with   the   vortex   filaments   parallel   to   the   z-axis,   and   then 
the   Karman  vortex   streets   can  be  observed   on   the  xy-plane.     As   far   as   the 
theoretical   Karman  vortex   streets  are  observed,   probably   the   vortex   fila- 
ments   keep   nearly   parallel   to   the   z-axis.      However,   as   the   vortex   streets 
break   into  an   irregular   state,   the  filaments   probably  begin   to   take  on   a 
three-dimensional   fluctuation  around   the   z-direction.      In  chaotic   states 
of  vortices   far   from   the   cylinder,   three-dimensional   effects   of   the   fila- 
ments  cannot  be  neglected.     Thus,   the   idealization of  an   initia1-period 
law   in   this   case   could   be   the  chaotic  motion   of   the   <7\   =   1   vortices  which 
keep   two-dimensional   features   themselves,   with   only  the  direction   of   fila- 
ments   fluctuating   around   the   z-direction. 

The  vortices   of ©C =   1   become   irregular   as   they  go  downstream.      But, 
ns     interpreted   in   Section   6,   it   is  difficult   for   them  to  become  completely 
irregular  because  of   the   directional   effects   in   the  interaction  of   vortices 
produced   from  the  cylinder.     And,   even  at   a   position  of   X,   the   functional 
form  of  P*,   indicating   the   statistical   situation  of  the   running  of   vorti- 
ces,   varies with   the  y-direction.     But,   the   V*-function  expressing mean 
states  of   the   vortices   produced  at  one  position  upstream  is  unaltered   in 
the   y-  or  z-direction   and   is  not  affected   by   the   pressure  gradient   of   the 
mean   flow. 

The  chaotic  motion  of   the o( =   I   vortices   in   this  case may  be   reason- 
ably   assumed   to  be   in   a   statistical   equilibrium,   but  not   in  a wide   region 
along   the  flow.      Thus,   as   an  extension  of   the  case  of  the   Isotropie   turbu- 
lence,   the   initial-period   law  in  this   case   is   expressed  by 

(22.3) 

Namely,   even   if   the   mean-velocity  distribution   is   two-dimensional   in   the 
xy-plane,   a   finite   value  of   the   z-component   of   turbulent   intensity   exists, 
and   the  initial-period   law  gives  a   similarity   preservation   in   this   case. 

In   the  decaying   turbulence,   there  are  many   kinds  of   shear   and^  shear- 
less   turbulence.     According   to   the   particular  cases,   the  P*-   and  V*- 
functions  may   take  different   expressions.      For   instance,   in   the   case  of  a 
round   jet,   an  elongation  of   the  vortex  ring  cannot   be  neglected   even   in 
the   initial   period.      In   the  casj?  of  a   two-dimensional  wake   in  a   nonuniform 
mean   flow,   a   distortion   of   the  V*-function   in   (22.3)   caused  by   the   pressure 
gradient  must  be   evaluated.      However,   if   the   statistical   similarity 
expressed   in   the   P*-function   is   assumed   for   the   chaotic motion  of   the 
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primary vortices   of  o(   =  1,   an  idealized  expression of   the  vortex  chaos 
motion can be  obtained.      It   is   proved   in  Sections   21   and   22   that   in  the 
case of  isotropic   turbulence  this   idealization  supports   the   Karman- 
Howarth   similarity  assumption.      In   this   chapter   some   investigations  on 
the extended   formulas   of  the  initial-period   law of  the decaying   turbulence 
shall  be made   (references   18  and   37). 

23.     INTENSITY  AND  SCALE  OF THE  SHEAR  TURBULENCE 

As   a   typical   case   of   the  decaying   shear   turbulence,   a   turbulent wake 
behind   a  circular   cylinder will   be   taken  and   the distributions   of   the   tur- 
bulent   intensity   and   scale under   the   condition  of   the   initia1-period 
similarity-law   shall   be   surveyed.      Expressions   for   the   intensities   of   the 
^v    =   1   vortices   can  be  written  as   follows,   with   formula   (22.3)   substituted 
into   (13.5): 

u^c^opt-;       vz*c^)t'i     ^-c^crfit-'. 

Cutty* ^fllP^A^>^s^>^^^^^&* 

(23.1) 
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The  coordinates   of   the  field  of   .low   are   taken as   shown   in  Figure  33.      In 
(23.1),   t   is   the   time  since   the   outbreak  of   the   o(    =   1   vortices   and   is 
obviously  connected  with   the mean   velocity   by   the   relation 

t* jU^ctX. 

(23.2) 

For   the   Euler   correlation,   discussions   in   the  case   of   an   isotropic 
turbulence  can   be   extended.     For   instance,   when  g ■  uu' /,    (***£)   is   taken 
as   a  correlation  coefficient  at   two  points   A and  A'   with   a   distance  ky  to 
the  y-direction,   the   ideal   expression   for   g   similar   to   expression     (20.7) 
is written  as   follows: 

(23.3) 

In the numerator s, 0, d  and s', 0', 4*   are the respective co-ordinates 
of the A*- and A*'-points in the D*-domain; in the denominator P* and F 
are the functions defined in the D*-domain for the A'-point, and^are the 
respective ordinates of the A- and A'-points in the field.  In this field 
of shear turbulence, a vortex motion, although not disturbed by others, 
may still be distorted by the shearing stress of the mean flow, and the 
turning velocity V* of (11.1) may not be in circular symmetry.  As 
mentioned in Section 12, however, s', 0', and fl(' are determined uniquely 
in the D*-domain according to the coordinates s, 0, 4,   and a distance k . 
Thus, when a parameter 

Su " 
4* 

7     4rt 
(23.4) 

is   introduced,    (23.3)   is   seen  to be  a   function of  Sy only  as   in   (20.7)   for 
isotropic   turbulence.     Namely,   the   similarity preservation  expressed   in 
(20.7)   still   holds   in   this  case  of   shear  turbulence. 

When  the   scale   lengths of L    and   Ao,  are defined  as   (18.7)   and   (18.8), 
their distribution  in   the x-direction  is written as 

L;-CL%yt, 
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'» 

(23.5) 

as   (20.15).      Other  components  of  correlation  function  and   their   scale 
lengths  can   also  be  defined   as   (23.3)   and   (23.5). 

In nonisotropic   decaying   turbulence,   the   field  of   flow   is   not  homo- 
geneous,   and   the  condition  of  spherical   symmetry  as   in   isotropic   turbu- 
lence  does  not  hold.      These   results   complicate   the   situation.     Namely, 
even  in  the   simple  case  of  a   two-dimensional  wake,   there   are  different 
components  of   the  intensity   and   functional   forms  of   the   correlation,   which 
cannot  be   reduced   to   the   two  elements  IX   and   f  only, as   in   the  case  of 
isotropic   turbulence.      It   is   also   difficult   to  prove   the   vanishing  of  the 
triple correlations  under  the  idealized  expression of  the  initial-period 
similarity-law.      Thus,  we cannot  expect  such  a   simple  propagation   formula 
of  the correlation  function   as   (18.9),   and   it  becomes  difficult   to  extend 
phenomenological   discussions based   on   the  propagation  formula   into  general 
cases  of  the  decaying   turbulence.      In  the  case of  isotropic   turbulence, 
when the  approximation of  the  initial-period  similarity   is   taken,   the 
correlation   functions   can easily be  derived   from the  propagation   formula 
without  evaluating  the  integration  of   (20.7).     In other  cases,   however, 
(23.3)  will  have   to  be  evaluated  directly   for  the  purpose  of  determining 
the functional   forms. 

The  above-mentioned  results  of   the  initial-period   similarity-law can 
be  ascertained  by  experimental  measurements.     Observed  results  on   the 
distribution  of  C   2 and  other  terms   in   the  y-direction  in   (23.1)   are 
shown  in Figure   34.      In  the  case  of   isotropic  turbulence,   these  coeffi- 
cients  of  the   intensity are  reduced   to  a  constant,   and   the  similarity 
preservation must  be  examined by  observing   the  form of  f  or   another 
correlation   function.      In shear  turbulence,   however,   this  characteristic 
can also be   seen   in  the profile  of  C^Z and  others.     As   another  example 
of measurements,   observed results  of C  «  and  the g-correlation behind  an 
airfoil  are   shown  in Figures   35  and   36.     Downstream from  the   airfoil, 
similarity  is   seen  to  be  preserved   in  the  g-function,   although  it  has  an 
asymmetrical   form in  the y-direction. 

For   the  distribution of  turbulent   intensity along  the   flow,    (23.1) 
proves   that when   the  data  at   locations   of   the  same  value  of    Q      are 
plotted,   a   linear-decay  law   it.*co t-"'     must  be  obtained   as   in  isotropic 
turbulence.     Far   downstream from the  obstacle body,   the  mean  velocity U 
is  taken  to  be  approximately constant  along  these  locations,   and   an 
essential   character  of  the linear-decay  law   in   this  case  can  be  checked 
experimentally by  taking  t c^ x.     As  seen  from  (23.1)   and   (23.5),   the 
scale  length  defined  by  the  correlation g  or   the profile  of   the  coefficient 
Cua in  the y-direction  increase,   along  the  flow proportionally to   t^. 
Figure  37   indicates   the characteristics  of   the  linear-decay   law  of   the 
initial  period   in  the  case of turbulent wake behind an airfoil. 
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24.      CONSERVATION   OF  MOMENTUM 

In   this   section   variation   of   the  mean  velocity   along   th-   x-direction 
of   the   decaying   shear   turbulence   shall   be   investigated.      At   first,   a   simple 
case  of   the   two-dimensional   wake   in   a   uniform  flow   shall   be   examined.      Af 
a   matter   of   course,   it   is   the   Reynolds   equations   that   connect   turbulent 
intensity  with   the   mean  velocity.      As   seen   in Figure   6,    the   region   in   the 
y-direction   of   the   turbulent   wake   is   far   smaller   than   that   in   the  x- 
direction,   and   the   shearing   stress   is   represented   by   h uv/o y,   with   the 
effect   of   molecular   viscosity   neglected.      Then,   as   in   the   laminar  boundary 
layer,    the   Reynolds   equations   (9.6)   are   reduced   to 

(24.1) 

where   the   velocity  components   are   taken   as   shown   in  Figure   38.      Apart   from 
the   body,   U,    and   V     become   far   smaller   than  U,   unlike   the   case   of  boundary- 
layer   flow.      When   they   are  neglected,    (24.1)   is   approximated   by 

uo*x  "      if   • 

(24.2) 

On   the   other   hmid,    the   relations   from   (23.1)   and   (23.2)   are 

*r = C&(l)t~,
) 

< " \f4yt       ) r ~   Uo   ' 

(24.3) 

Therefore, (24.2) is integrated into the form 

(24.4) 

Figure 39 shows an observed result of this relation. 
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In a two-dimensional wake in a uniform flow, momentum loss M of 
the mean flow across a section is written as 

CO 

'00 (24.5) 

Since U, is taken to be small, (24.5) is approximated by 

mo 

— CO 

(2;.6) 

Thus, by using (24.4), it can be proved that the relation 

(24.7) 

holds independently of t. 

From a phenomenological standpoint, momentum loss in a section across 
a wake must be balanced with the resistance of the body affected by the 
main flow.  Namely, by evaluating (24.6) with an observed U,-distribution, 
an approximative value of the resistance can be obtained.  The relation 
(24.7) means that (24.6) gives a constant value of the resistance at any 
section along the wake where it is evaluated. 

According to the physical picture of the structure of turbulent flow, 
the primary vortices formed by the effect of the boundary layer around the 
body are successively thrown away and carried along, accompanied by a 
cascade phenomenon.  Thus, the kinetic energy of a uniform flow is first 
transformed into that of the primary vortices and is further transmitted 
into the descending small vortices where it is partly dissipated into 
heat.  If the momentum loss of the mean velocity may be proved to vary 
along the flow, the effects of these vortices on velocity fluctuation are 
exactly evaluated, because the Reynolds equations strictly connect the 
mean flow to the turbulent intensity.  In Section 14, a vortex motion of 
o( ■ 1 is shown to conserve a constant kinetic energy in itself.  It seems 
that this characteristic causes the initial-period law, which was derived 
considering only the primary vortices to give the result (24.7). 

In order to measure the resistance of a body, the Pitot-traverse 
method is often_used, whereby resistance of a body is found by measuring 

' \ the profile of U, by a Pitot tube and evaluating the integration (24,6). 
It is seen from many experiments that an exact value of resistance is 
obtained regardless of the location of the Pitot-traverse if the location 
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is somewhat apart from the body.  This fact may be regarded as experimental 
support of the idealization of the initial period. 

The above discussion is concerned with a simple c_a_se of a_  ' w. • 
dimensional wake in a uniform flow, where the feature U]^ ^^ U  v.dkes it 
easy to develop the initial-period similarity-law of isotropic turbulence 
into a   definite expression.  In other cases of decaying turbulence, how- 
ever, it becomes difficult to obtain definite expressions, because the 
simple condition of a uniform mean flow or neglection of the elongation of 
the vortex filaments cannot_generally be adapted.  In many cases, U^ 
cannot be neglected versus Li, and the relation between x and t is al:"1 

intricate.  Therefore, it is difficult to derive a definite result trom 
the initial-period law.  However, from the common viewpoint of the ideal 
state of the chaotic motion of the 0\ = 1 vortices, the characteristic of 
conservation of momentum may be widely adapted to the general decaying 
turbulence in its initial period. 

When the main flow of a decaying shear turbulence is uniform without 
a pressure gradient, the profiles of turbulent intensity across the flow 
may be assumed to preserve their similar form along the flow, as indicated 
by (22.3) in the case of a two-dimensional wake.  By letting f— and L , 
respectively, be the distribution of uv across the flow and th^vscale 
length to this direction, an expression 

r 

(24.8) 

is   obtained,   where m   und  n aie  unknown  exponents  and   r   is   a   distance 
across   the   flow.      When   (24.8)   is   substituted   into   the  Reynolds   equations 
and   the   condition  ot   romentum  conservation   is   used,   the   exponents  m  and 
n   can  be  determined   together  with   the  distribution   of mean  velocity   along 
the'   flow.      In   the   two-dimensional  wake,   for   instance,  when   (24.8)   is 
substituted   into   (24.2)   with   r  =  y,   then  m=l,   n=^   from condition   (24.7) 
is   obtained.      As   x   is   proportional   to   t   in   this  case,   the  relations   (24.3) 
and   (24.4)   can  be   proven  inversely. 

In   the   turbulent wake behind  an  axisymmetric  body,   the   expressions 
of   the  Reynolds   equations  and   of   the  momentum  conservation  are written 
as 

-oo 
(24.9) 
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with   U0   and  U-.    taken  as   shown   in  Figure   38.     Combining with   (24.8), 

(24.10) 

is  obtained.      For   a   two-dimensional   jet   in  a  still   fluid,   the   expressions 

(24.11) 

are  used   to derive   the  following  relations: 

UV 

771 « /^ 11 = /. (24.12) 

In an axisymmetric jet, the relations 

(24.13) 

lead to 
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nt = zj -n- /. 

(24.14) 

In the case of a half jet, the character of flow is essentially the same 
as (24,12).  However, if the decaying of the term TTv is neglected near 
x = 0, 

-m.- d?       -n = / 

is arrived at from the conditions 

dX 6U. du,    ) 

Figure 40 shows the above-mentioned results graphically. 

(24.15) 

(24.16) 

In general cases of decaying turbulence, it is difficult to derive 
exactly the distribution's of turbulent intensity and scale from the 
expressions of P*- and V*-functions of the initial-period law.  The 
condition of momentum conservation, which is proved by the initiai-period 
similarity-law to hold approximately in the case of a two-dimensional 
wake, is important in determining the distribution of the velocity in the 
x-direction.  Results from (24.10) to (24.15) will be taken as the founda- 
tions of the studies for practical purposes. 

25.  PROPORTIONAL CHARACTER OF THE COMPONENTS OF TURBULENT INTENSITY 

In the previous sections, distributions of turbulent intensity and 
scale along the x-direction have been studied. Then, under the condition 
of the initial period, discussions will be made on the characteristics of 
turbulence in a direction across the flow. 

In the case of isotropic turbulence, the components of turbulent 
intensity are proved to be equal to each other because of the completely 
irregular chaotic motion of circular vortices in a uniform flow.  Of 
course, this is not adapted to general cases of decaying turbulence. 
However, because of the significance of a vortex chaos motion, components 
of turbulent intensity cannot be independent at all, although decaying 
turbulence is not in a completely irregular state.  Even in a turbulent 
shear flow, one large component of the turbulent intensity is usually 
accompanied by other components which are not small.  Owing to experimental 
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observations,   it   is hardly   supposed   that   turbulent   flow  has   only one 
extremely   intensive compunent. 

In  the  case  of  a   two-dimensional  wake   in  a  uniform   flow,   components 
of  the   turbulent   intensity   are   expressed   in   (23.1)   by   the   initial-period 
similarity-law.      In  (23.1)   vortex motions  are   taken   to   be   two-dimensional 
in  themselves   as   previously   interpreted.     If   all   the  directions  of   vortex 
filaments   f.re   assumed   to  be  parallel   to   the   z-axis,    (23.1)   becomes   a 
purely   two-dimensional   expression  of   the  functions  P(s,0;^ )   and  F(s,0). 
Now,   in  tn   idealization  of   the   initial-period   in   a   two-dimensional   wake, 
we   shall   use   the   supposition   that   the   vortices   fluctuate   their  direction 
of   filaments   around  the   z-axis  with   equa]   probability,   regardless   of   the 
location  in  the   field  of   flow   (cf.   Figure  33).     Thus,   the   initial-period 
similarity-law   is   represented  by   two-dimensional   expressions  with   a 
correction  term of  the   inclination </>,   to  the  z-axis. 

As   seen  in  Figure   33,   the   z-component  of   turbulent   intensity   comes 
from  the  values   of   the  x-component   and   the   inclination  d   .     When  the 
probability  distribution  around   the   z-direction   is  denoted   by  F*(^))   at 
least  the   relation 

PM)= P*(-*) m 
(25.1) 

holds from the characteristic of an equal probability.  Thus, the expres- 
sions C ie(1

r|) and other terms in (23.1) are written as 

Cfz (i)= (4C\j j P*(sJ *;i)F\ e)*^ eotecteäs \jum, i P*C*t )d4,}/^s.C^d&i 

-go 
(25.2) 
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where so(0) denotes the  boundary of the D*-domain.  On account of condition 
(25.1), C—— and C— are easily proved to vanish, and the mean-velocity '  vw       wu 
distribution remains two-dimensional although a finite intensity of the 
z-cotnponent exists. 

Now, in (24.2), we write 

and 

*/ = 4C' 
0 

** 

rr 

—JC 

Ä5 

it 
infrfMij 

C44 e- er»;. / ä SY«) ^ <?. 

(25.3) 

(25.4) 

Th en > ^ua'(
yl^ ^n (25.2) can be transformed as follows 

Cu*(i> = a,aJfjpfa6; VF%, e)ds] a*(e)ci0 » a,o.^\fiffai)€*{$<£0, 

l s9(6) 2rr 

Ztr *jr 

o 

Namely, 
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near   the  center.     As   the A-point moves   far   from the center  part   of  O 
vortex chaos  motion,   parts  of  the  velocity   fluctuation  of   large   values 
must  be decreased. 

In order   to proceed with  a  statistical   treatment,   introduction of  the 
P*  function  is  made  by  taking only   the mean  values  of   the  velocity 
fluctuations   consisting  of   large  and   small   values.     As   the  A-point  moves 
across   the   flow,   the   functional   form  of   P*   gradually  changes   in   the  D*- 
domain.     Thus,   the  values of C u^   (V))   and  other   terms  decrease  contin- 
uously  in the  y-  or   z-direction.     This   is  also  true  for   the mean-velocity 
profile   O-(T)),   as   shown  in  Figures   34   and   39.     However,   if   velocity 
fluctuation  is   observed with   the  time,   this  means   that   an  irregular 
mixing of  the  parts   of  large  and   small   values  is   taking place.     When the 
A-point moves   far  away,   the  parts  of   large  velocity  fluctuations  decrease. 
Namely,   on account  of   the characteristic   of  an  incomplete   irregularity  of 
the P*-function,   the   existence of   some  region in  the   field  of   flow where 
large  and   small   velocity  fluctuations   are mixed  intermittently   is  assumed. 
Therefore,  without  a   statistical meaning,   the boundary  of  shear   turbulence 
cannot  be  defined. 

Figure 42   shows   the velocity   fluctuations  in  a   turbulent wake behind 
a circular cylinder.     The figures   represent  a  kind  of discontinuous 
phenomena  such  as  that of the  transition  situation  from  the   laminar  to 
turbulent  boundary  layer shown  in  Figure   13.     These phenomena  have been 
widely observed   in other  turbulent   shear   flows of wakes,   jets,   and 
boundary  layers.     They are known as   the   intermittency phenomena   at  the 
free boundary  and  are  regarded  as   important  characteristics  of   the  turbu- 
lent  shear  flow. 

For  convenience,   let  the part  of   the  velocity  fluctuation   that  is 
less   than critical  be  laminar  and   the   larger part  be  turbulent.      If  the 
summation of  time  intervals  of  the   laminar  parts  in  the  range  Or^t   is 
denoted by  t » ,   a  limiting value 

«   m jfan* \ f"   "^"V 

(26.1) 

can be defined that has been introduced by Townsend (reference 40) as an 
intermittency factor representing the ratio of the combined laminar and 
turbulent parts.  It is assumed from the incompletely irregular P*-function 
that the value of ^ distributes with the value 0 «^ 1 in a fairly wide 
region in the field of flow not near the center of the vortex chaos motion. 

Then, in the case of a two-dimensional turbulent wake, quantitative 
discussions that are based on the initial-period similarity-law shall be 
made.  An A-point is taken in the xy-plane in Figure 33, and this point 
is moved in the y-direction.  By virtue of the expressions (25.2) of the 
initial period, statistical features of the movement of the intersections 
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of the xy-plane and the vortex filaments can be expressed in the function 
ol P* (s, 0; 1^) in a   two-dimensional D^-domain, regardless of their 
inclination to the z-axis.  This is also the same for the function F. 
When the two functions are written as 

(26.2) 

in   the   two-dimensional   D^-domain  of   the   x^y^-plane,    the   one-dimensional 
distributions   along   the  y,v-axis  of   the  probability  density   and   of   the 
mean   turning   velocity   become 

(26.3) 

In   tne   field   of   flow of   the  xy-plane,   let  us  consider   the   situations 
when a   vortex with   the   shortest  distance   from  the  A-point   passes   the 
parallel   line  AA'   from   the  A-point   in   the   y-direction.     The  mean   turning 
velocity  of   the     o(   =   1   vortices  has   the   same  profile   for   every  vortex 
on   the  AA'-line   as   shown  in Figure   22.     At   a   finite  distance   from  the 
vortex  center   on   the  AA'-line,   a  critical   pointW*  shall   be   taken   as 
shown   in  Figure  43   (A).      Inside   this   point,   the  flow  may  be   regarded  as 
being   turbulent  with   a   large   velocity   fluctuation,   but  outside   this  point 
the   flow   is   considered   laminar,   with   a   small   fluctuation. 

Let  us   consider   the  situations   in  the    ^ *^*-plane  of   the  D*-domain, 
Since   the   variable  0  of   the   turning-velocity   function  is  constant   on  the 
AA'-line,   the   functional   form  of  F(0,37*)   on   the    1^ *-axis   in   the   D*- 
domain   is   the   same   as   that  on   the   AA'-line   in   the   field   of   flow.      There- 
fore,   the  critical   point  on   the  AA'-line   can  be   transmitted   to   the ijL- 
point   on   the T7 *-axis   with   the   same   distance   from  the   origin.      On   the 
other  hand,   distribution  of   the   P^-function   is   given  by  P^(0,^f *; 7)   in 

(26.3),   as   shown   in  Figure 43(B).     Then,   from  the  definition  of   the  ?*- 
function   the   relation 

00 «e 

(26.4) 

is deduced by neglecting the effect of the laminar part in the - to*- 
direction. 
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As   the  P*-function in  (26.3)   is   concerned with  the   «K =   1  vortices 
produced at one  position in the  field of  flow,   the  functional   form is 
relatively constant  regardless  of  the value   "^ of  the A-point  on  the 
AA'-line,  with only  varying distribution  position of  the   probability 
density with  an  increasing value of   >?   .     Therefore,  when  P*  is  expressed 
in a func   ion of   >7 *'   measured  from  the  point of  the  highest   probability 
as  shown :n Figure 43(C), 

is obtained,   where  T?*'   is  the distance  between the  points   of ^ * an^ 
the highest  density  of  P*(0, ^*;0)   on  the   ^*-axis.     Thus,   the  intermit- 
tency  factor   ir(>7)   is   expressed  in  the   simple  integration  formula, 

/ - Tty -- C, ■+ C2 fpfo *'MV * '> 
-7 (26-5) 

where  the constants  c^  and C2  are  determined by  the   location of  the 
critical  point     >7 *  and  the condition   limT-—^0,   respectively. 

c c &'>c0 

The functional form of P* in the shear turbulence must be given a 
priori as a hypothetical foundation of the statistical theory.  The 
assumption P*=constant of the complete irregularity in the shearless 
turbulence has a common feature of the Ergodic hypothesis for the vortex 
chaos motion and for many other phenomena.  On the other hand, no general 
discussions on the expression of an incomplete irregularity in statistical 
physics is obtained, and in the statistical theory of turbulence a mathe- 
matical expression must be given according to the real states of the vor- 
tex chaos motion.  In the idealization of the initial-period law, we have 
assumed the statistical equilibrium of the P*-function.  It is further 
assumed that P* is a function of   7£ *  only as shown in Figure 23(C), and 
it may be appropriate as the first approximative description to assume the 
Gaussian distribution of 77*.    Namely, taking H as the dispersion and c 
as a constant. 

P* = C   €     r*-     , ^ = 

(26.6) 

is  arrived at where d~ is regarded as   the nondimensional  dispersion. 

The  intermlttency  factor Is is  connected to the  P*-functlon by a simple 
mathematical  expression and,  at  the  same  time,   is directly observed.     By 
(26.5)  ai 1  (26.6),   the  following relation of  the intermlttency  factor 
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F-2  ^J^*' 

(26.7) 

is obtained 

Although thy above derivation applies to the case of a two-dimensional 
wake, the assumption of the Gaussian distribution of the P*-function may 
be generally adapted to other cases of shear turbulence.  In the cas'j of 
a round jet as shown in Figure 40(C), the above derivation still holds in 
the plane containing the center axis, and formula (26.7) can be checked 
experimentally.  Figures 44 and 45 show observed results of the distribu- 
tions of T   in these cases.  The observed results, as pointed out by 
Corrsin (reference 41), are well represented by the Gaussian-integral 
curve.  The formula (26.7) is that which has given a quantitative inter- 
pretation to the empirical recognition of the intermittency factor, 
according to the idealized treatment of the initial-period similarity- 
law.  Even if theoretical evaluations of the dispersion H are difficult, 
(26.6) gives a constant value to cp regardless of x.  Figure 46 is an 
experimental verification of this result^ and in Figure 47, (T" does not 
seem to be dependent on the mean speed, U . 

27.  DISTORTION OF THE HOMOGENEOUS AND ISOTROPIC TURBULENCE 

In order to derive quantitative results from_the initial-period law, 
it is necessary to decide the functional form of V* as well as the func- 
tion of P*.  In the case of Isotropie turbulence, the solution of a two- 
dimensional viscous vortex motion is taken as the fundamental form of V*, 
because of the spherical symmetry in the completely irregular vortex 
chaos motion.  In_other cases, the field of flow is not uniform and the 
deviation of the V*-function is widely observed from the simplest case 
of spherical symmetry.  The problem of distortion of the Isotropie turbu- 
lence in shearless turbulence shall be taken in this section as a simple 
case of the deviation. 

Asa matter of coursa, the essential characteristic of shearless 
turbulence is the condition Inconstant of the completely irregular vortex 
chaos motion.  Therefore, in the flow of shearless turbulence, an inter- 
mittency phenomenon cannot be observed, due to P*^constant of the incomplete 
irregularity.  As detected in a wind tunnel stream when the mean velocity 
is made nonuniform, the turbulent flow deviates fron the state of Isotropie 
turbulence into that having different values of the components of turbulent 
intensity.  This tendency may be attributed to the deviation of the V*- 
function from the symmetrical form, in spite of the complete irregular 
arrangement denoted by P*=constant. 
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Even with   the   idealization of   the  initial-period  of   the    o<   =   1   vor- 
tices,   it   is   difficult   in hydrodynamics   to  decide   the   functional   form of 
V*  in accordance with  an arbitrarily  given pressure  distribution of   the 
mean  flow.     As   a way  to  show  the  process   of  the  statistical   study  on  this 
problem,   the   following  ideal   case   is   surveyed. 

amely,   such   a   nonuniform  field   of   flow  as   shown  in  Figure  48   is   taken 
and   the   two-dimensional,   completely   irregular   vortex chaos  motion  along 
the  center   line   of   the  x-axis   is   considered.      In  the  uniform   flow  upstream, 
the  vortex  chaos  motion  shall   present   the   situation  of   an   idealized,   two- 
dimensional,   isotropic   turbulence.      When   the mean  velocity   is   accelerated, 
however,   circular  vortices may be  deformed.     When we write 

(27.1) 

with U0 and U(x) at the uniform and contraction parts, respectively, 
effects of the pressure gradient of the mean flow may be represer ;ed by 
the parameter ^0 as the first approximation.. With an undisturbed mean 
turning velocity of vortices V*s=F(s) (2C J y "t-*) and the effect of defor- 
mation  P'C«j 0.'A), the following expression for the V*-function at a 
point x is obtained: 

7* - FM (zcJvt 'VF'^ SJX0) . 
(27.2) 

It is now difficult to evaluate the functional form of F'(s, 0;^.^ 
exactly by the Navier-Stokes equations for the viscous vortex motion. 
However, under the assumption of a perfect fluid, a square part of ehe 
fluid is transformed approximately into a rectangular form at the con- 
tracted part, and a circular vortex is deformed into an elliptic form. 
According to the continuity condition, the ratio of the axes of the 
rectangle, or of the ellipse, can be connected to the parameter  Ao of 
(27.1).  For the perfect fluid, the turning velocity around .m elliptic 
body can be evaluated.  Thus, by estimating F' of the mean turning velocity 
of deformed vortices at x as above and integrating in the elliptic D*- 
domain, the following expressions (reference 37) are obtained: 

-/ 
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functional form of V* for the viscous vortex motion in this case.  If a 
tentative case of the numerical values is taken, such that the obliqued 
elliptic form of the mean vortices in the 45° direction is twice the 
ratio of the axes and the Gaussian distribution of P* is three times that 
of the relative dispersion (j—^ , üher. the distributions in the y-direction 
of XX,  V* , and uTT can be evaluated by formula (25.2) of the initial- 
period similarity-law (reference 37).  The mean velocity profile can also 
be determined by solving the Reynolds equation (24.16). 

Calculated results and experimental comparison are shown in Figures 
50 and 51.  Of course, they have no more significance than the supposition 
that the initial-period law also may derive appropriate results on the 
profiles of turbulent intensities across the mean flow, if .he fundamental 
functions of P* and V* for the o< «= 1 vortices are clarified by future 
investigations. 

29.     LIMIT OF THE INITIAL PERIOD 

In all previous sections in this chapter, theoretical studies in the 
initial period are made of the distributions of turbulent intensity and the 
scale, both parallel and perpendicular to the mean flow.  The initial- 
period law, however, is obviously an approximate description which is 
expected to hold at locations not far behind the body.  In isotropic turbu- 
lence, an insufficiency of the description is detected, particularly in the 
correlation functions as mentioned in Section 21.  In order to check this 
point for decaying shear turbulence, an experimental work has been per- 
formed on the turbulent wake behind a circular cylinder. 

As seen in (22.2), the region in which the initial-period law is 
adaptable depends principally on the time t since the outbreak of the o( =   I 
vortices.  Thus, observations, as for downstream as possible, were made of 
the profiles of the mean and fluctuational velocities behind a small 
cylinder in a low-speed flow.  Although velocity profiles were seen to 
preserve their similar form in the downstream flow, a gradual variation 
could be found.  As shown in Figure 52, the similar form of the profiles 
becomes narrower at the bottom and wider at the top.  The same tendency 
was also found in the profiles of IX.  Moreover, as the similar profiles 
of the mean and fluctuational velocities became broken, the decaying of 
IA/   became faster than the relation ttco t" .  Figure 53 shows the observed 
results of the distribution of IA*  along points with similar relative loca- 
tions in the profiles. 

In isotropic turbulence, the coefficients C—, Cu«, and others are 
respectively constant in the y- or z-direction, aHd the character of simi- 
larity preservation should be investigated with respect to the form of the 
correlation function or the decay of turbulent intensity. It is mentioned 
in Section 21 that observed results of the correlation function cannot be 
supported by the theoretical curve of the initial period. If the correla- 
tion function can be evaluated definitely by the formula of the initial 
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period, such as (13.1J) with N=1 in the shear turbulence, discrepancy 
between the evaluated and observed results may be determined earlier than 
the deviation from the similar profile of the mean- or fluctuationa1- 
velocity is detected.  The similarity character is broken because of 
cascade phenomena.  As mentioned in Section 5, production of new vortices 
ran be assumed because of the disturbing effects of vortices in their 
chaotic state.  Thus, in completely irregular vortex chaos motion of 
Isotropie turbulence, a disturbance to one vortex that is affected by others 
is more critical than in shear turbulence.  An experimental verification 
of the breakdown of a similar profile in a turbulent wake or jet can seldom 
be found.  Therefore, it is concluded that the idealized expression of the 
ini t ia 1-per iod law can be t^iken to be more useful in shear turbulence than 
in the case of shearless turbulence of an isotropic or contracting flow. 
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CHAPTER SIX.     TRANSFER THEORY   IN   THE   INITIAL  PERIOD 

30.     TRANSFER OF MOMENTUM IN  THE SHEAR  TURBULENCE 

An  essential  operation  in  the  statistical   theory of  turbulence   is   to 
introduce expressions  of   the Reynolds  stress   as   functions of   location  in 
the   field of  flow by means_of  appropriate  statistical  and hydrodynamical 
hypotheses  in the  P*-   and V*-functions.     With  these  expressions  combined 
with   the  Reynolds   equations,   mean velocity   can  be  determined.     The   purpose 
of   the  theory  is   to  give  a unifiable  theoretical   process  of  evaluating 
statistical  quantities   of mean and fluctuational  velocities   in general 
cases  of  turbulent  flow.     Idealization of  the_initial-period  law  is   no 
more   than a postulation  by  which  the  P*-  and V*-functions  may  be   easily 
determined.     By  taking   the  approximative  description  of  the  initial-period, 
some   quantitative  results  mainly  related  to   the  velocity  fluctuation  were 
discussed  in the  last  chapter. 

However,   a  strict  calculation of  the  distribution of  the  Reynolds 
stress   in  the  field of   flow  is  generally  difficult.     Although  it   does   not 
seem  difficult   to  grasp   the   functional   form  of   the  Gaussian  distribution 
for   the   P*-function,   there   is   little  reliable   foundation  for   the   functional 
form of V*.     Present   investigations  of   the   real   states  of an  individual 
vortex motion are  few.     Therefore,   it  is  difficult   to   proceed with  a  consis- 
tent   study  of  the  evaluation,   especially  of   the  mean  velocity  which   depends 
on  this   theory.     Generally   speaking,   as   the   study   proceeds   toward   theoreti- 
cal  unification,   the  process  used between  foundation  and evaluation  of 
practical   problems  becomes   lengthy.    When viewed as   an  interesting  engi- 
neering   problem in  fluid  mechanics,   analysis   of   the  mean velocity   is 
important  in the case  of  a  shear  turbulent   flow.     Only  if  the  real   state 
of   the mean velocity  is  anticipated can many  practically  important   problems 
be  solved,   although  there  is   no  knowledge  about   the  velocity  fluctuations 
themselves.     The character  of   the  transfer   theory  proposed by  Prandtl 
(reference   10)   should be   interpreted from this   point  of view.     This   theory 
has  been used with many  appropriate results   in  regard  to  the mean-velocity 
profiles,   and has   played an  important  role,   up   to  date,   as  a  practical 
theory of  turbulent  flow. 

However,   the  transfer   theory has  a narrow  scope  of  application.     This 
theory  holds  only  in  the  decaying or nondecaying  shear  turbulent   flow  and 
loses  meaning  in  the case  of   shearless   turbulence,   as   this   is   a  particular 
theory  adaptable  to  a  narrow  field of  turbulent   phenomena.     On the  other 
hand,   the  theory of  isotropic   turbulence was   developed,  as mentioned 
previously,  by  referring  to   the velocity  fluctuations   themselves   in   the 
simplest  case of  the  shearless   turbulence.     However,   it  seems   impossible 
to  connect  the basic  hypotheses  of  the  transfer   theory with  those  of 
isotropic   turbulence.     In  the   study of  transfer   theory,   few considerations 
are  made  of  the basic   hypotheses.     It  is   thought   that  such a  situation 
prevents   the application of   the  transfer  theory  to  a wide  field of  practical 
problems.     Before   questioning   the meaning  of   the  hypotheses  based  on   the 
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standpoint  of   the   statistical   theory  of   turbulence,   the   foundations   of   the 
transfer   theory   shall   first   be   summarized. 

In  statistical   dynamics   of  gas,   Maxwell's   transfer  theory   applies   to 
the  molecular  chaos   motion   slightly  deviated   from  an  equilibrium  state 
(reference 44).      This   theory   explains   the   inner   structure  of   a   viscous 
llow   as   follows.      For   brevity,   consider   a   laminar   viscous   flow  with 
constant   temperature  which   consists   of   only   one   kind   of molecule   and  which 
has   a   mean-velocity   profile   changing  only   in   the   y-direction  as   shown   in 
Figure   54.     According   to   the   physical   image   of   a   molecular   chaos   motion, 
many   molecules   of   a   fluid   are   carried   along   by   the   mean   flow   at   speed   U 
and   collide with   each   other   in   their   agitating  motions.     The   viscous 
shearing   force  Zyn ^s   assumed   to  be   equivalent   to   the   amount   of momentum 
of   the   flow   that   is   transferred   across   the   flow   by   the   effect   of  molecular 
chaos   motion. 

When  a  molecule   at   y=h   moves   across   the  mean   flow with   a  molecular 
velocity  Cm  and  with   momentum  mU(h),   it   loses   its   momentum  by  colliding 
with   another molecule   at   y=hT .      The   increase   of  momentum of   the   molecule 
at   y=h      is  written   as   mU(h)-mU(h   ),   with  m   as   the  mass   of  a  molecule. 
Complying with   this   assumption,       Z?rv at  Y^i    i-s   expressed   as 

~7„ = fCn {ua)-ü&,)} j f*A/m 
(30.1) 

when the time mean is taken.  Here, N is the number of molecules in a 
unit volume at y=h, , and jf    is the density of fluid.  When higher terms 
are neglected in trie Taylor expansion of lT(h)-U(h1), (30.1) becomes 

(30.2) 

When   (30.2)   is  written  as 

cCy. 

(30.3) 

with   C'    the  root-mean-square   value  of  Cm  of   the   N  molecules,   jt„   can   be m m '        m 
taken   as   the mean   free  path;   that   is,   the mean   value  of   the  distance 
between   collisions   of  molecules.     Namely,   for   the   viscosity   coefficient 

JU.    in   the Navier-Stokes   equations   (9.1),   the   following  relation 
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/b ~ /Cffi*** > 

(30.4) 

can  be obtained 

As mentioned  previously,  JLX     has   an  order  of  the  value   10       cm m 
which   is  far   smaller   than  a macroscopic   standard   length   in  the   field   of 
flow.     Namely,   in   a  macroscopic   field   of   flow   the molecular  chaos  motion 
can  be  regarded  as  homogeneous   inside  an  extremely  thin  region  of   the 
thickness  of   about   10"^cm   from a  body.      C'   and    jt *   have   respectively J m ^^ m r J 

constant  values  which   lead   to  a   constant   value   ot yU/ in   the whole   field  o 
flow  with   this   thin  region   neglected.      Therefore,   the   formula   (30.4)   of   tl 
transfer  theory  of  a   molecular  chaos  motion  cannot  give  a  more   useful 
contribution  to  the  fluid mechanics  of  a  viscous   flow  in whichyU* is 
phenomenologically  assumed   to be  constant   in   the   field  of   flow. 

In  turbulent   flow   in which   a   vortex motion   in  its  chaotic   state   is 
considered  to  consist  of many  small  parts  of  fluid,   these  small   fluid   part 
are  supposed  to possess  an  agitating motion  like  that  of molecular chaos 
motion.     It may be  said   that   the  physical   picture of a  vortex  chaos  motior 
is  proposed  in order   to  seek  the cause  of   this   agitating motion  of   the   fit 
parts.     Whatever  physical   interpretation  is   given  to the   structure  of 
turbulent  flow,' existence  of  the phenomena  of  an agitating motion  of   the 
fluid  parts  is  acknowledged.     Thus,   in  turbulent   shf.ar  flow,   the mean 
momentum is  assumed   to  transfer  across   the   flow  in  the  same manner  as   in 
molecular chaos motion.     In  this  case,     7    an^   £   are  expressed   as 

(30.5) 

where V is  the  intensity of  velocity  fluctuation  in the y-direction,   and jt 
is  a  mean free  path  of  the  mean value of   the  distance  in  this   direction 
of many  fluid  parts. 

As a characteristic  of vortex chaos motion,   the  scale  length  of  the 
agitating motion has   a macroscopic order.     The  values of V'   and /'are  not 
constant  in  the   field   of  flow,   and   €   cannot  generally be  regarded  as   a 
constant,   unlike  the  case  of a molecular  chaos motion.     But compared with 
the  original  expression 

J (30.6) 

(30.5) has a feature that is expressed in the two quantities V and ^ ,whic 
have respective definite physical meaning in the agitating motion of the 
fluid parts. 
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It is still difficult to consider the two quantities at the same 
time, and the following attempt expresses them as one quantity. Since 
(30.5) and (30.6) lead to 

(30.5) may be expressed as 

(30.7) 

7= f/* I JUj dU 
TA'   * Uy' df-   > (30.8) 

^hen   a   length 

(30.9) 

is   introduced. 

The  quantity  *C   given  by   (30.9)  has  a   somewhat  different  meaning   from 
^C     of   the mean distance  of  fluid parts.     However,   the expression   (30.8) 

contains   only  the   scale   length   ji  as  an  unknown  quantity,   and  here   the 
;haracter  of   T    can  be  considered more   easily   than  in   (30.5).     The  above- 
nentioned  procedure  is   an  outline of  the   transfer  theory of  turbulence 
sroposed   by Prandtl   (reference   10),  where   (30.9)   is  known as   the  formula  of 
lomentum  transfer  and    £    as   Prandtl's mixing  length. 

Strictly  speaking,   the mixing length jt   depends  on the  two  independent 
[uantities.     As  proved   in  Section 25,   however,   the correlation coefficient 
rv/'V^     in  (30.9)  has  a   tendency to be constant   across  the  flow, unlike  the 
.ntensity l/* in  (30.5).     Thus,   the mixing  length    j£     of  (30.9)  can be 
•egarded  as  approximately  proportional  to  the mean  free path    j£ 

If   the distribution  of    S    of  the product  of V   and £   can be presumed 
n  some way,   the deduction  of   (30.9)   loses  its meaning.     If  such  a  presump- 
ion  is  difficult,   (30.8)   has  an important meaning with*/ taken  to  be 
roportional  to  the   yc' .     This   is  a point of  Prandtl's  transfer  theory 
f  shear   turbulent  flow. 

TRANSFER OF VORTICITY 

According  to   the  continuity characteristic   of  a   fluid,   a   small  part 
ay  certainly exist  in which  the  fluid has  almost  a   simultaneous motion, 
t   is  not  unreasonable   to  compare  this  agitating  motion  to  the molecular 
haos  motion.     On  the  other  hand,   owing  to   the  continuity  of  the  fluid,   it 
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is   also certain   that   the   turbulent  agitating motion  is not  discontinuous, 
but   is  a continuous   phenomenon with  respect   to   the  time  and   location  in 
the   field  of   flow.      In an   agitating motion  of   fluid parts,  when  one  part 
moves  out,   another   part   of   the   fluid  must   enter   into  this   position.      Namely, 
fluid  parts move   about  causing a  constant   interference with   the   surrounding 
fluid.     It   is  difficult   to   suppose   that   the  original  momentum  is   exactly 
conserved  until   the  moving  part  of   fluid   changes  direction.      The   funda- 
mental   formula   (30.5)   of   the  momentum   transfer   theory   is   derived  with   the 
effect  of  this   interference  neglected. 

In  an  example   of   two-dimensional   shear   flow   shown  in  Figure   54,   if  a 
line  part  of   fluid   parallel   to   the   x-direction makes  an  agitating motion 
as   a whole  in  the   y-direction with  no   value  of   vorticity,   the   formula   of 
momentum  transfer   strictly  holds.      But   in   turbulent   flow  of   a   vortex  chaos 
motion,   such   a   situation   cannot  happen.      Thus,   in   the  physical   image   of  an 
agitating motion   of   fluid   parts,   it  may   be   vorticity  rather   than  momentum 
that   is   transferred   as   it   is.     This   is   a  basic   conception  of   the   vorticity 
transfer  theory   proposed   by  Taylor   (reference   11). 

In  the  Navier-Stokes   equations,   when   the   viscous   terms   are  neglected 
they  are  transformed   into 

7r+ä3r(—i—J-tvJtg, wsiy,)- f zi J 

^F + ip-( z     J-(.WS2X   w*)~ f^   , 

(31.1) 

with   the  vorticity  components   in  the  x-,   y-   and   z-direction,   r   spectively, 
denoted  byfix,ßy,   andi7z.     When U,   fX. x,   and   other   like   terms   are written 
respectively  as   U+u,/2    +co   ,   etc.,   and  with   the mean  and   f luc tuational 
parts  divided   and   time^eans   taken   in   (31.1), 

(31.2) 

is   obtained.     When   a   two-dimensional   flow   is  considered   for  brevity, 
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Sl^Sly O, -K*-- 
(31.3) 

is  obtained  and  (31.2)   is  simplified  to 

otP 
ctX 

= fVUJ. 
(31.4) 

with the variation of  turbulent   intensity  in the x-direction neglected, 
As   the Reynolds   equations  in  this  case  are  simplified   to 

cCP oti 
o(X cCif    > (31.5) 

the  relation 

■f 
ctu-   = f^i 

(31.6) 

is obtained.  According to the supposition of transfer of vorticity across 
the flow, the expression 

Vcüi ^r (31.7) 

is arrived at in the same manner as the deduction of (30.3) where lA and £ 
are the same as in (30.5). When Prandtl's mixing length £  of (30.9) is 
introduced, (31.7), (31.6), and (31.3) lead to 

<*Z       sa'ZfcCi'/ cfu 
dp - fr/^l *?' <*r 

(31.8) 

This  is  the  formula of the vorticity  transfer theory proposed by Taylor 
(reference   II),  which corresponds  to   (30.8) of the momentum transfer theory. 

32.     REPRESENTATION OF TURBULENT SCALE 

Expressions  of   the transfer   tneory connect  turbulent  shearing  stress with 
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the mean  velocity,   using  an unknown  quantity  of  the mixing   length Jc .     The 
length JL is   further   interpreted   to   be   approximately  proportional   to JL   of 
the mean   free  path  of   fluid  parts.      Thus,   in  the  transfer   theory,   an 
essential   problem  is   inquiry   into   general   characteristics   of   the  mean  free 
path  in the  real   states   of   turbulent   flow.   First,   the  previously  proposed 
statistical   representations   (reference  9)   of   the  quantity  of   turbulent 
scale whose  definition   Tiolds   in   any  case  of   shear  or   shearless   turbulence 
will be  reviewed. 

When L     is   considered   to  be   the  distance moved  by   a   fluid   particle 
across   the   flow   in a   Lime   interval   0'N/t,   it   is written   as 

it* \v(t-itU*.t > 
(32.1) 

and  the  correlation  between L     and  V"   becomes 

itv ~ Ht)\v(t-£tyd£t 

t_z  
= { vCt)v(t~ikJd&t 

t 
= tr:z^vxr(^t)ditj 

o 

(32.2) 

(32.2)   is   one   of   the  Lagrange   correlations   as   denoted   by   expression   (19.3) 
Since  L.v   is  written  as 

Uv - L ^t _ ± ^t 
fut Z    dt 

(32.3) 

^ ^ „ v*iRv*(it)cii, Z   cit 
(32.4) 

is obtained.  As in the case of the Euler_correlation, when k  is made 
large, Rvv(k ) tends rapidly to zero and L^ attains a constant value of 
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Ll- Zv-zt\R^v(iit)dit 

(32.5) 

Therefore,   by   (32.2)   the  coefficient  of  turbulent   shearing   stress   (30.5) 
is   expressed   as 

oo 

t-*oo 

(32.6) 

As  mentioned  previously,   the conception of  the   transfer   theory is based 
on   the   Lagrangian   point   of  view of   the movement   of   a  fluid  part. Thus, 
with  the Lagrauge correlation  taken  into account,   the  fundamental quantity 
can   be   directly  represented. 

As   a  quantity concerning  the   turbulent  scale,   the Euler correlation 
includes   the  expression of  the Reynolds stress  as  a  special case.     The 
scale   length L^ of  (18.7)   or Af  of   (18.8)   is   defined by   the correlation 
whose  definitions can be  extended  into general  cases  of  nonisotropic 
turbulence.     In  the  case of  Isotropie   turbulence,   the Lagrange and Euler 
correlations   are connected by Taylor's  hypothesis,   as mentioned in Section 
19.      But,   in   shear turbulent  flow,   where the  transfer  theory can be  applied, 
Taylor's   hypothesis  does  not  hold,   and it  becomes  difficult  to connect   the 
mean   free  path/' to   the general  expression of  the  Euler  co::relation. 

The   interpretation of   a vortex chaos motion  introduced  to clarify   the 
cause  of   the   turbulent  agitating motion belongs   to  a  Lagrangian interpre- 
tation  of  a  physical   image.     The basic   formulas  with  the   D*-domain  intro- 
duced  in Chapter Three  are   attempts   to deduce  the  Eulerian expressions   of 
the Reynolds   stress  from this  Lagrangian view of   the  phenomena.     According 
to   this   physical   picture,   the mean  free  path £' at  a  point  corresponds   to 
the   relative  mean value  of   diameters   across  the   flow of many vortices 
passing  near   this  point.     For  example,  when R   .   is   taken  to  be a relative 
length  in  the  y-direction of  the  i-th vortices   in  an  idealized two- 
dimensional  chaos motion consisting  of N kinds  of  vortices,   an expression 

A/ •>-/ 

S-LPt^ 
(32.7) 

may be the most direct representation of the mean f-ee path X    ,  where P* 
given by (13.6) means the ratio by which the i-th vortices are mixed.   1 
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33.  TRANSFER HYPOTHESES IN THE  INITIAL PERIOD 

In this section, foundations of the transfer theory shall be Su^'pyed 
according to the idealization of the initial-period law mentioned in the 
last chapter.  As a representative example of the decaying shear turbulence, 
a two-dimensional wake in a uniform flow shall be considered.  In the 
initial period, the profile of the mean velocity or shearing stress can be 
expressed by the parameter >7 = ty/JÄVt.     This representation supports the 
discussion in Section 30, where relative variations of the profiles along 
the x-direction are neglected. 

In the expression (30.5) of the coefficient of shearing stress <S . 
-o of (32.7) is represented by Ry of the c<l =1 vortices in the initial 
period and is proportional by (22.3) to ts 

(33.1) 

Thus, since 
J_ 

in (23.1), a relation 

V   ^    t 
(33.2) 

(33.3) 

is obtained along the x-direction. When 8 and U, are taken, respectively, 
as the breadth of wake and the defected mean velocity as shown in Figure 
33, they may be proved to be proportional, respectively, to t^ and t~\. 
Then 

cf Co S(j 
(33.3") 

is obtained.  Expression (33.3) or (33.31) is the same as the assumption 
proposed by Prandtl in the transfer theory (reference 45). 

As for the profile of £ in the y-dlrection, £'   in (30.5) is 
constant in this direction because of the o< =1 vortices.  Thus, 

(33.4) 

In this case of the turbulent wake, expressions of velocity fluctuation are 
attributed essentially to the two-dimensional description as described in 
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Section  25,   and   by   (25.2),    (33.4)   becomes 

P* (33.5) 

with   the  coefficient   terms   in   (25.2)   neglected.      If we   further   assume   that 
Jthe   value  of V    is   constant   in  a   fully-developed   turbulent  state and   that 
V*   sinO     is   independent   in   the  D*-domain,   the   integration  of   (33.5)   presents 
the   profile   of   the   intermittenry   factor    P    of   (26.5),   and   the   iormula 

co r (y) 
(33.6) 

is   obtained. 

In   the   transfer   theory,   a   simple  expression  of   the   basic   assumption 
is   preferable   to   the  strict   representation of   the  phenomena,   as   far   as 
deriving  useful   results   for  practical   problems   is  concerned.      Thus,   the 
expression   (33.5)   or   (33.6)   simplified   as 

1 ~    I     o Sz<f 
(33.7) 

shall be assumed as shown in Figure 55.  The expressions (33.6) and (33.7) 
are the same as proposed by Townsei.-1 (reference 40).  In view of expressions 
(33.3) and (33.7), £ is considered constant in the whole region of the 
turbulent wake.  This is the simplest expression of the assumption.  In the 
real state of a vortex chaos motion, £,   of (33.5) must be taken for many 
kinds of vortices, and such a simple deduction as the above-mentioned one 
becomes difficult. 

The mixing length *&   is represented by £    if uv/tT  is assumed to 
be constant.  With this assumption, (33.1) leads to 

s (33.8) 

Namely, the mixing lengthj^ increases in the x-direction proportionally to 
the breadth of flow and is constant in the y-direction in the wake.  Expres- 
sion (33.8) is also the assumption proposed by Prandtl (reference 45).  As 
seen in Figure 41, however, it is a problem to assume a constant profile 
of uv/l/* , and it is difficult to discriminate between (33.7) and (33.8) 
at this stage.  At any rate, in the approximation of the initial period, 
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the above descriptions may hold in other cases of decaying shear turbulence 

34.  TURBULENT WAKE 

Formulas (33.7) and (33.8), which are derived from the ini t i .J 1-pit i od 
simi lar i ty-1 aw, are simple expressions of the fundamental abpumpt i n ^\    Llie 
transfer theory.  However, merits of tlve two should bv   discussed h- 
comparing computed and experimental results.  Aiulvt ICJ! works en t he   ui- 
velocity profile in the initial period shall bo pit sented in this section. 
in the case of a two-dimensional wake, the Reynolds i-quatiop is ;j[jf>i ox imaLed 
by (24.2), and the time t in (23.2) is taken to be proportional to x. 
Therefore, the velocity profile is expressed as 

(34.1) 

In the formula of the momentum transfer theory which contains the 
mixing length, the turbulent shearing stress is written b\ (3°.9) and 
(33.8) as 

J - a.x.   . 
(34.2) 

By substituting (34.1) and (34.2) into (24.2), the Reynolds equation 
becomes 

f(i.)+ i.f'W 4fH'>fh'>" 0> 

7/= <*>?'> 
(34.3) 

where the prime of f denotes differentiation by "tf \.     The boundary condi- 
tions are given by ' given by 

*       l 

(34.4) 

By solving (34.3) with (34.4), the expression 
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(34.5) 

is obtained (reference 39). 

According to vorticity transfer theory, (31.8) gives the expression 
of shearing stress.  However, since the value of £    is independent of 
the y-direction, (31.8) takes essentially the same form as (30.9) of the 
momentum transfer.  Namely, by putting 

(34.6) 

the same expression as (34.3) of the Reynolds equation and the solution of 
(34.5) is developed. 

Using the shearing-stress coefficient C , (24.2) and (33.7) lead 
to the equation 

(34.7) 

where the boundary conditions are taken as 

/"= 0        at %' O J 

fx       K   U0s       •     (34.8) 

Since the coefficient E is constant in the flow, (34.7) is of the same 
form as the equation of a two-dimensional viscous wake, and the solution 
with §-►o^ (reference 46) is 

-^ 

m 
(34.9) 
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In formula (33.6), an ordinary differential equation is derived when 
the profile of  T is given by (26.7) of the initial-period law.  The 
solution may be proved to be 

/£ - f{*7*o + -lr*)}. 

with constants a and b (reference 42). 

(34.10) 

Figure 56 shows a comparison of the above evaluated results with 
experimental works in turbulent flow behind a circular cylinder, where 
(34.5) and (34.10) are shown by two curves in the figure.  Although (34.9) 
and (34.10) are almost the same, the latter seems to give better results 
near the boundary (reference 42).  This is reasonable because the assumption 
of (34.10) is undoubtedly a more accurate description of the flow, when 
compared with (34.9).  At any rate, discrepancies of the evaluated results 
are small.  As a practical method of evaluation, the essential purpose of 
the transfer theory, the simple expression of (33.7) seems to be appropri- 
ate.  Namely, mathematical analysis in this case of the turbulent wake takes 
the same form as in laminar viscous flow.  There are no grounds on which 
to state that the numerical value of S is independent of the state of flow. 
By comparing_the solution (34.9) with experimental results in Figure 56, 
6 ^ 0.047 11^(0) (reference 46) is obtained, and the order of £// becomes 

(34.11) 

1 2 
a   value   far   larger   than   that   of   the   kinematic   viscosity ^/t/f? 10        cm   /sec 
of   the   air.      Signifying   the   difference   of   the   scale   of   the   molecular   and 
vortex  chaos  motions,    it   is   regarded   as   the   reason   to   neglect  molecular 
viscosity   in   the   study   of   shear   turbulent   flow,   as   done   in   Section   24. 

The numerical value of the mixing length ^C can also be presumed by 
comparing evaluted and experimental results (references 40 and 48). Owing 
to  measurements   of  the   two-dimensional   wike, 

^ = o.sS 
(34.12) 

is arrived at.  Thus, although the coefficient of ratio may vary case by 
case, the mean free path ^/  has the same order of magnitude as S     , 
because ^e ,   seen by (30.9),  compares with ^£'    .     This fact signifies that 
the scale of vortex chaos motion which causes the turbulent agitating motion 
compares to the whole breadth of the shear turbulent flow, as mentioned 
before- 
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The   essential   point   of   the   above-mentioned  discussions  of   the   typical 
case  of   a   two-dimensional   wake   can  hold   in other  cases   of  decaying   shear 
turbulence   (references   39   and   47,   39,   48   and   49.)      In   the   region  of   the 
initial   period,   only  outlines   of   the  analyses   shall   be   related.      In   the 
initial   period  of  an  axisymmetric   turbulent  wake,   the   velocity  profile   is 
written,   by   referring   to   (24.10),   as 

and   the  mixing   length   is   expressed  by   (33.8)   as 

4 ^ x 3. 

Then the Reynolds equation (24.9) is integrated into (reference 50) 

(34.13) 

Based upon the assumption (33.7) that C - constant, the Reynolds equilib- 
rium may also be integrated into a definite expression of the velocity 
profile (reference 38). 

In many other cases of the turbulent wake, the above-mentioned treat- 
ment may still be applied; for instance, to an asymmetrical two-dimensional 
wake as shown in Figures 6, 35, 36 and 37.  In the initial period, the two 
kinds of vortex chaos motions are assumed to preserve their respective 
similarity characteristics, with the effects of the descending vortices 
neglected.  At a position behind the body, yr  and X   may have different 
values on both sides of the wake.  Thus, formula (33.7) or (33.8) holds for 
numerical values as shown in Figure 57, and the relatively similar profiles 
of (34.5) or (34.9) are derived with a different value of  §* 

35.  TURBULENT JET 

When a turbulent flow blows into a still fluid from a two-dimensional 
slit, the Reynolds equations are given by (24.11).  Referring to (24.12) of 
the initial-period similarity-law, the equation takes the form of an ordi- 
nary differential equation.  Namely, with the assumption 5 ■ constant of 
(33.7), (24.11) becomes 
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r+flfdv+r-o. 

(35.1) 

where  U     is   the   velocity   in   the   slit   and  a,    is   the   breadth   as   shown   in 
Figure  40.     When   (35.1)   is   solved with   the  boundary   conditions, 

-f   ' O cut Tf =   O 

oo , 
(35.2) 

a  solution 

no) 
z. 

(35.3) 

is   derived   (reference  46). 

According   to   the  momentum  transfer   theory,   with   £ =   constant   from 
(33.8),   the Reynolds   equation   (24.11)   becomes 

f*+ f'ffd? + cry - o, 
o (35.4) 

which   can  be  integrated   (reference  51).      Using   the  vorticity   transfer   theory 
with   a   constant  mixing   length,   the  same   equation  as   that of   the   two- 
dimensional wake  may  be   obtained.     The   solution   is   compared  with   experimental 
results   in Figure   58.     With   the  assumption    S   "■  constant  from   (33.7)   in 
the   case   of  an   axisymmetric   jet,   the   equation  of motion  is  written  as 

^m| r  '    U0       *   > " -*- (35.5) 

by (24.13) and (24.14) and the solution 
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(35.6) 

is   derived   (reference  49).     When   relation   (33.8)   of   the mixing   length   is 
considered   in   the   momentum-transfer   theory,    equation   (24.13)   becomes 

JfC^-adCf-ir}** (35.7) 

und can be integrated (reference 51).  Figure 59 shows a comparison of the 
(jvJ1uated and observed results. 

In the case of a half-jet, if the assumption S   -  constant from 
(33.7) is used in (24.15) and (24.16), the equation 

A rifa = ^ 
of?) /-if U*    > 

(35.8) 

is   derived.     The   boundary  conditions   are   given  by 

(35.9) 

But   (35.8)   is   not   easily   solved   by   (35.9).      If 

(35.10) 

is   taken,   (35.8)   is   integrated   into   the  expression   (reference  46): 

f-/+£[*%. 
(35.11) 

Considering  the   relation   X/S   =  constant  of   (33.8),   equation   (24.15) 
becomes 
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Jfdv+r=o} 
(35.12) 

which is easily solved (reference 51).  Figure 60 shows the experimental 
comparison. 

In this case of a half-jet, in Section 28 an attempt was made to 
derive a profile of the mean velocity, together with turbulent intensities, 
directly from the initial-period similarity-law.  Compared with that 
attempt, the transfer theory can give a preferable result of the mean 
velocity profile, depending on the simple assumption and analysis.  Thus, 
if the purpose of the study is confined to the evaluation of only the mean 
velocity of turbulent shear flow, the transfer theory shall still be 
important.  On the other hand, the initial-period law based on the P*- and 
V*-function mentioned in the last chapter has the purpose of giving a 
statistical interpretation, unificatively, to the general phenomena of 
turbulent flow.  Therefore, as far as the mean velocity is concerned, the 
above P* - V* function approach shall have accomplished this role if the 
fundamental assumptions of the transfer theory of a practical purpose may 
be derived from this description of the initial-period law. 

As a matter of course, the basic assumption (33.7) or (33.8) is 
adaptable to the approximative description of the initial period, and as 
mentioned in Section 29, deviation from the initial-period law in the 
decaying shear turbulence is not as conspicuous as it is in the turbulent 
flow behind a grid.  This characteristic makes the simple formula of (33.7) 
or (33.8) especially useful in the analysis of the transfer theory.  How- 
ever, in order to evaluate the deviation of the mean velocity profile 
from that of the initial period, there must be a search for the effect of 
the descending vortices on the profile of &     or j£'    .     In the following 
chapter, mathematical descriptions of cascade phenomena shall be attempted 
in the general cases of shear or shearless decaying turbulence. 
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phenomena, the origin of time shall be shifted to the time when the o< = 1 
vortices form an irregular state and the cascade phenomena begins.  Namely, 
scales of the m=1 vortices have grown up already to some extent at te0, 
and the descending vortices of m 2> 2 are produced constantly with t«0.  Of 
course, the ordinate x is connected definitely to t by the relation t*/0'eLX 
of (23.2). *• 

Now, the vortices of an m-generation produced in a tiniL1 interval 
t ^t0 + dt0 shall be denoted with a suffix 

m (tj 
(36.1) 

When the time t is taken so that t ^ t , a functional relation between t 
and x of the location in the field of flow is determined.  A fixed A-point 
is taken at a position of x, and the m(t0)-vortices passing nearby are 
considered.  At this A-point, the probability-density function defined by 
(11.S) for these vortices is written as 

(36.2) 

In (36.2) the function P** is concerned with the m-vortices produced^in a 
unit time interval at t , where r, 0, ^ are the coordinates in the Drr^t )c 
domain and  the suffix t means that the state of irregularity of these 
vortices generally changes along the flow.  The ratio by which the m(t )- 
vortices are mixed in the whole kinds of vortices passing near the A-point 
is expressed as 

(36.3) 

as  defined   by   (13.6).     The nondimensional   probability-density   function  for 
these  vortices   is   given by   (16.1)   as   follows: 

(36.4) 

The ratio by which the vortices of m-generation produced in O-^t are 
mixed in the whole kinds at the A-point is written as 

108 



^ t 

(36.5) 

For all the kinds of vortices, the relation 

^-^ (36.6) 

holds independently of t as formula (13.7). 

According to the physical interpretation of the cascade phenomena, a 
vortex of some generation is produced from at least tvvo vortices of the 
ascending generations.  However, vortices of an ascending generation bring 
about vortices of some descending generation by the disturbances from other 
vortices of the same or different generations from these ascending ones. 
Let the probability with which m(t)-vortices produce some vortices of n- 
generation (n>m) in a time interval t~t+dt be written as 

p*(yr>Ct0)-*r>Ct))dt. 
'36.7) 

Namely, we take a ratio between the number of the m(t ), t-vortices passing 
near the A-point in some time interval and that of the n(t)-vortices produced 
by the above vortices in the region t^t+dt along the flow in the same time 
interval. The limiting value of the ratio is also taken by making the time 
interval infinite. The function p*dt of (36.7) is the limiting value of 
this. The form p* has the dimension of the inverse of time and corresponds 
to a kind of transition probability in statistical mathematics. 

37.  POISSON PROCESS FOR THE CASCADE PHENOMENA 

In the statistical theory of turbulence, it is characteristic to 
express the degree of irregularity of a vortex chaos motion in the P*- 
function.  The function P* of (36.4) is a relative probability-density 
function in the D*-domain for the tn(t ), t-vorticrs, in which the previously 
discussed statistical features of the shear or shearless turbulence can be 
adapted.  In the study of cascade phenomena, the function P:*l(m(t ),t)dt0 
denoting the mixture of different kinds of vortices must be taken into 
account.  In this section this functional form shall be discussed by 
surveying the transition probability p* of (36.7)  (reference 54). 

The function p* of (36.7) has the independent variables m, t0, n, t. 
In the real state of cascade phenomena it may have a complicated functional 
form, and it is difficult to imagine the functional expression even by means 
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of experimental observations.  However, since t originates when cascade 
phenomena begin, p* cannot be assumed to vanish for all the m- and n- 
vortlces at t - 0.  p* must have a nonzero value, at least for the m=l 
vortices. Thus, when the function p* is expanded Into the Taylor series 
for the Independent variables, at least the first term must remain as a 
nonzero constant. 

As the first approximative expression for the p*-functlon, a constant 
value of p* that Is Independent of m(tQ) and n(t) will be assumed by taking 
only the first term of the series.  This assumption means that vortices of 

*,      m generation are produced only from those of the previous m-1 generation 
at a constant rate that is Independent of the generation and time.  Namely, 
the expression 

(37.1) 

will be made to be the basic assumption of the study of the cascade process. 
If p* In (37.1) Is made zero, the foregoing descriptions shall be reduced 
to the formula of the Initial-period law.  When a constant of p* is not 
zero. It Is possible to evaluate the effect of cascade phenomena in the 
simplest way of a statistical analysis.  It is easily supposed that as a 
generation m Increases, such an idealization of the situations becomes 
more Inaccurate for the real states of the cascade phenomena.  The assump- 
tion (37.1) allows a survey of the deviation process from the initial-period 
law caused by the cascade phenomena of young generation vortices. 

When a time Interval O^t is divided into N equal small intervals, the 
ratio by which vortices of some generation produce the next ones in each 
Interval is given by 

r-Kf . 

Namely, it is supposed that in the first time interval of N=l, only the m= 
1 vortices exist, and in the following intervals of NS2 many kinds of 
vortices of m~.2  are produced from those of their respective previous 
generations.  In this case, the probability distribution of each generation 
is proved in statistical mathematics to be expressed in the binomial 
distribution 

Because of the relation wL^m(l-p*|q-)N = exp(-p*t), the limiting value at N-v*> 
of the binomial distribution may be proved to become the so-called Polsson 
distribution. 

I 
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Thus, with thg assumption (37.1) of the transition probability, the 
functional forms P*' or P* of (36.3) or (36.5) of the mixture of vortices 
can be stated as the following Poisson distributions: 

P+'MV, t)  = -^ S— Jt*       (r* **, 3, . -4 

t:*r*t.. 
(37.2) 

or 

t 
* 

(37.3) 

(37.2) and (37.3) are obviously connected by the integration formula of 
(36.5). 

An important feature of (37.2) or (37.3) is that the variable t or t 
in (36.3) or (36.5) is replaced by t* or t*.  According to the discussions 
of the initial-period law in Section 20, the variable along the flow should 
be taken by t, not by the ordina_te x itself, because by the latter variable 
the effect of the mean velocity U  appears explicitly.  For the same reason, 
when the cascade process is taken into account, t should be replaced by t*B 

p^t of a nondimensional time.  Otherwise, there will be many kinds of 
relations depending on different values of p*, namely, on different inten- 
sities of the cascade process.  At any rate, the combination of a parametric 
constant p* of (37.1) and of the time t into a new independent variable t* 
will make the subsequent statistical analysis somewhat easier.  Figure 61 
shows the distribution of (37.3). 

38.  NONSTATIONAL EXPRESSION FOR THE CORRELATION TENSOR 

In the real state of flow, m(t )-vortices produced at a time t are 
simultaneously carried along and affected by other kinds of vortices, and 
these effects make it difficult to preserve a similarity characteristic for 
any large distance along the flow.  Even with a simplified treatment of the 
Poisson process, the mixing situation of different kinds of vortices does 
not represent a similarity characteristic versus the variable t* as shown 
in Figure 61.  Namely, the functional form of P*' of the m(t0)-vortices at 
a time t varies generally with t-t0 as denoted by (36.2).  Also as in_the 
case of expression (22.2), the function of the mean turning velocity V* for 
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the m(t0)-vortices  at   t  may be  generally written as 

%^J (38.1) 

with a decaying term G_(t )(t-t ) 

In the derivation of the Poisson distribution in the last section, 
there was no need to relate the functional form of F^JJfto) t,     to  t^e 

^wCt,) t domain.  It has been explained that the similarity preservation 
in the initial period comes from the two similarities of the F*- and V*- 
functions.  Corresponding to the idealization of the Poisson process of 
the mixture of different kinds of vortices, the two functions of P^^Ct^ ^ 
and VynC-t } t.    shall be simplified by taking only their respective first 
terms of the Taylor expansions versus t0-t.  Namely, in the study of the 
cascade process, the two fundamental similarities shall also be assumed 
for every group of ni( te > - vort ic es   E^/en if the whole field of flow shows 
a shear turbulent state, the P* - and V---f unc t i on for everv kind of m(t )- 
vortices are assumed tc preserve their respective similar functional 
forms along particular pw&itu-ns (x, y , z * in the tield of flow.  As for 

o   o 
the nonsimilarity characteristic uf the cascade phenomena, only Poisson 
distribution characteristics shall be considered   Let the above-mentioned 
similarity for all m(t ^-vortices he called local similarity. 

At the position corresponding to a time t which has elapsed since 
the beginning of the cascade phenomena, the ideal expression of u-intensity 
is given by (13-9) as follows: 

(38.2) 

When the  Poisson distribution   (37.2)   or   (37   3^   is  substituted   into   (38.2), 
it  takes   the  form of 

o J 

112 



f 
i 

D,    J J 

(38.3) 

with the nondimensional time introduced. 

In the initial-period law, the expression of V* for the m^l vortices 
js based on the solution (14.6) for the two-dimensional viscous vortex 
motion.  Furthermore, it has been observed that when the primary vortices 
of m=l are elected as those ot oC  -   1, favorable agreement between theo- 
retical and experimental results is obtained.  In the study of cascade 
phenomena, it is assumed that the production condition is the same, 
independent of the production instant t as for the vortices of an identi- 
cal kind or m-generation.  The relation between a generation of vortices 
m and their kind o(    is written as 

(38.4) 

In order   to make  the  expression   (38.3)  more definite,   elongation or 
& contraction of vortex  filaments   is  neglected,   as  discussed  for  the  initial- 

period  similarity-law of a  two-dimensional   turbulent wake.     In this  case 
the decaying  term in  (38.1)   is  written as 

(38.5) 

I from the solution (14.6).  In (14.6) t is the elapsed time since the 
beginning of a vortex motion, and in (38.5) the term due to the period 
before the beginning of cascade phenomena is contained in the constant 
term £*(£»%)• The P*- and V*-functions of local similarity for m(t )- 
vortices can be expressed as 

j 

F<<M  = ZGtOn)^%(•*>) j (38.6) 

from formula (22.3) for the case of the initial-period similarity-law. 
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When (38.6) is substituted in (38J3), the intensity of the u- 
component is written as follows, with U the mean velocity: 

,% 4 = U'%*t*'(r/J4*i, a, VF/Cr/tät,^4)/>%ff**?**&?. (38.7) 
»; 

When the Euler correlation function of the u-fluctuation at two 
points of (x, y, z) and (x+k , y, z) is denoted by f(k ;t*), the correla- 
tion functions for many groups of m(t )-vortices preserve their respec- 
tive similar forms by the assumption of local similarity.  Thus, when 
their respective nondimensional ordir res are denoted by 3m^t \, corre- 
sponding to the distance kx, their ci  elation function is expressed as 

t(fa) (*»>&*)) (30.8) 

independently of t*-t*.  By substituting (38.8) into the Poisson distri- 
bution as in the case of (38.7), the following formula is obtained: 

t* 

(38.9) 

cit* 

Here, Ay^^t.*)^* is given in (38.7). Of course, (38.9) can be reduced 
to (38.7) with kx»0. Expressions for other components can be obtained 
in the same manner. 

Along a direction perpendicular to the mean flow, the function 
^•mCto)! in (38.6) varies generally as in the initial-period law in shear 
turbulence.  Only different parametric values of p* can be attributed to 
the Poisson process of the cascade phenomena.  Thus, either (38.9) or 
(38.7) is regarded as an extended formula from that of the initial-period 
law to the cascade phenomena of the decaying turbulence. 

39.  PRODUCTION CONDITION OF A VORTEX MOTION 

At present it is not clear which sort of vortices of «C may be pro- 
duced under what kinds of conditions in the real state of flow.  The 
assumption of o< «1 for the primary vortices in the initial period has no 
theoretical ground, but this assumption is made to give the decaying law 
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IX. ***t,    of turbulent intensity, the momentum conservation of the mean- 
velocity profile, and other results preferable to the real state of the 
decaying turbulent flow. 

According to the discussions in Section 14, the solution of a vortex 
motion can take any values of 6<^*1 under the boundary condition of zero 
value of turning velocity at the center and infinity, and there is no 
reliable ground to decide the function  o^ (m) of (38.4).  It is sure, 
however, that production conditions of m^2 vortices are not the same as 
in the case of m=l vortices, because the m=l vortices are produced with 
the energy of the nonviscous main flow supplied by means of the boundary 
layer around a body, while m 2 vortices are produced with the energy of 
the viscous vortex motion of the preceding generation.  Therefore, 
although m is a positive rational number, o^ (m) may be taken to be 
proportional to m, not to be a constant term, as the first approximative 
expression.  Thus, as the simplest assumption of the functional form of 
o^ (m) having the condition o^(l)»l, 

of  = TKt (39.1) 

shall be taken. 

— 2        -1 
If p* is made zero in (38.7), it becomes the form (tt/U) "(A1/p*)t 

of the initial-period law.  In the case of the isotropic turbulence, the 
solution (14.6) for two-dimensional viscous vortex motion of o^ »1 can be 
taken as the function F^ in A, of (38.7) together with the condition P*1« 
1, and (38.7) is reduced to 1 

/it)-8      A, f'f 
^0)  ~   f>* l' ) 

«■ =s 

o 

4Yt 
(39.2) 

of  the   same  form of   (20.10)   of   o^«l,  where   the  time  t  is  taken from  the 
production  instant of  the   o(   =1  vortices.     In  the  initial-period   law, 
the coefficient A./p*  can be  regarded  as  a  constant,   since  s     is  inde- 
pendent  of t  for  t>0. 

At   t=0  in   (39.2),   the  radius r also becomes   zero__and  the coefficient 
A^/p*  becomes  indefinite.      If A,/p*  is  definite,   (lJl»/U)^ diverges.     The 
solution  (14.6)  of the  equation   (14.1) with  a  boundary condition  (14.5) 
represents only  the diffusion of vorticity concentrated at  first  at  one 
point   in a  fluid.      (14.1)   Is  an equation of diffusion,   and  the  solution 
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(14.6) does not concern a problem of Che production of a vortex motion. 
Namely, the decaying formula (38.2) in the initial oeriod has a singu- 
larity character a'c  t«0.  But, the period in which t:hec(»l vortices 
come into a chaotic state can be excluded from the discussions.  This 
holds in other cases of the decaying turbulence, and there is no need to 
question the singularity character in relation to the initial period law. 

In the cascade phenomena, new vortices are produced incessantly along 
the flow, and the consideration of the production cannot be avoided from 
the analysis.  In the real state of flow behind a circular cylinder, a 
vortex motion is first formed by taking some energy from the main flow and 
then is carried along the flow separated from the body.  Probably a vor- 
tex motion may begin  to obey the growing condition (14.1) of vorticity 
diffusion after it has attained a finite region of vorticity in some 
period of the production.  In the production period, there is no equation 
governing the states of flow.  Speaking of the growing condition of a 
vortex motion, the constant term Ay^-tJitTin (38.7) derived from the 
equation (14.1) seems to vanish at t*«t*, decreasing its value in the 
production period as shown in Figure 62, and prevents the divergency of 
the value of UU /U.  It is more important to consider the magnitude of 
an initial constant C«/ contained in A than to discuss a relative func- 

^^ m 
tlonal form of ^ near t*"t*.  In the case of m»!, C, can be related to 
the circulation /» at t-0. 0 In the case of m^2, the constant C«^ may 
be proportional, at least approximately, to the energy of the preceding 
vortex motions. 

It is not of much value, however, to continue the present indistinct 
presumption of the difficult problem of the production of a vortex motion. 
In this section, for the purpose of giving an example of estimation of 
the nonstationary formulas (38.9) or (38.7), a following provisional 
assumption will be made.  Namely, A is assumed constant for simplicity, 
and to prevent the divergency at t*-t*  of the term (t*-t*)1-2m in (38.9), 
It is replaced by (l+t*-t*)^'2m.     Further, to determine constant values 
of Cm, turbulent intensities lA.,, tC«, •.. due to the vortices of m»l, 2, 

are made 

M,»*- 

o 
(39.3) 

where A means a rate of energy supplied from the main flow, and C corre- 
sponds to that of m£2 vortices supplied from the preceding generations, 
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On the other hand, the of  =1 vortices are proved to conserve their 
energy in their expanding regions, and their decaying indicates the 
linear relation  |X "^o^t.  Thus, in an imaginary case of the cascade 
process consisting of the same kind of  <^ =1 vortices, the decaying 
shall indicate \x  "2c^t.  By this estimation, the value of C is found 
to be 1.5, and such a relation of the coefficients in (38.9), 

2ry*-/ 

A     '        ci+t*-t:)*~-'t 
(39.4) 

is obtained.  Of course, this is a temporary expression until exact 
conditions of the production of vortex motion in the real state of flow 
are clarified. 

40.  DECAYING LAW 

In the decaying formula (38.7) of the turbulent intensity due to the 
cascade process, ( UL/U)  is expressed in a function of t* with a constant 
term A multiplied, if the presumptions X39.1) and (39.4) are introduced. 
Calculated result of the relation ( IJL/U)"2 A~t* is shown in Figure 63. 
As in the case of the initial-period law, this decaying curve is adaptable 
to the general decaying turbulence of the wake flow behind a grid or a 
cylindrical body, for instance. 

In Figure 63 the result of an imaginary case of  c?C (m)«l is also 
given, which indicates a nearly linear relation in about t*«0'^'1.7.  It 
is, of course, due to the rough presumption (39.4) of the production 
condition that the curve does not completely coincide with a straight 
line.  On the other hand, if another imaginary case of oL   (mÄ2)=oo with 
od (1)=1 is taken, all energy of m^2 vortices are instantly dissipated 
into heat, and (38.7) indicates the decaying characteristic (UL/U)"^"t^e^ 
of only the m=l vortices.  Decaying curve of the case o<.Cm)=yv» ought to 
lie between those mentioned above.  Although it Is not easy to survey 
analytical features of the expression (38.7), the decaying seems to 
become increasingly rapid with an increasing nondlmenslonal time t*, as 
shown in the figure.  Probably this feature should be attributed to the 
Poisson process in (38.7), rather than the presumption in (39.4); and 
for the decaying process of the cascade phenomena, it may be inappropriate 
to assume the simple power expression  UL  «-^t11, which Is characteristic 
of the similarity laws. 

It is widely observed in turbulent wake behind a grid that the tur- 
bulent intensity U- 2 decreases, at first proportionally to x or t, and 
then more rapidly downstream.  In order to check the above-mentioned 
decaying law, experimental data were chosen in which departures from the 
linear-decay law are clearly observed.  Since It Is difficult to evaluate 
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experimentally the values of an initial constant A and a transition prob- 
ability p*, it is necessary to compare them with the theoretical curve_ 
by multiplying adjustable constants to both sides of the relation (t^/U)~ 
t\J  t of the experimental data.  The theoretical curve is adaptable also 
to the case of a shear turbulent flow of two-dimensional wake in a uniform 
flow.  The experimental data behind a  circular cylinder in Figure 53 dre 
shown in Figure 63. 

Even in the region of the linear-decay law of the isotropic turbu- 
lence, the intensity decreases along the flow increasingly proportionate 
to K""* y   and it becomes extremely difficult to carry on a measurement 
unless far downstream.  Nevertheless, according to Figure 63, experimental 
data attain at most about 1.6 of the nondimensional time t*.  Situations 
of the mixing of vortices in this region of the Poisson process can be 
seen in Figure 61.  Thus, it can be assumed that even with precise experi- 
mental observations, only the beginning part of the cascade process can 
be attained.  This may be the basis by which a simple idealization of the 
Poisson process, although with a rough presumption (39.1) or (39.4), can 
cover the previously proposed experimental data with fair accuracy. 

41.  DOUBLE CORRELATIONS IN THE ISOTROPIC TURBULENCE 

Correlation function of the u-fluctuations at two points with a 
distance k along the flow is expressed in (38.9).  It is first necessary 
to know the functional forms of :f^<(yyO of the local similarity.  In the 
case of isotropic turbulence, the functional forms of -f^/y^are given by 
the Karman-Howarth's solution (20.14).  Namely, when the relation o(  (m) ■ 
m is taken and 't is replaced with t* and t*=tA, in the case of m«l and 
m«2, respectively, then the correlation function fm of m-generation is 
given by 

PB| 

4^ h C-nt^z), 
(41.1) 

where M^Zm--^:) , ^( ^ m/(4m-2))} represents the hypergeometric function 
M^ m(z) in (20.14).  Substituting the solution (41.1) into the Poisson 
process (38.9), the expression f can be obtained as a function of § and 
t*. 

In the formula (38.9), f( ^ ,t*) always has the characters of 
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f(0,t*)-l, f(g,t*)<. I,  and f(^ ,0)-f1(^).  For the locally similar 
f.n-function. Figure 29 of the solution indicates the relation 
fm( / (2m-l)t*7(t*-t*) g)   < f (^ ), and in (38.9), f( ^,t*) < f^g) 
is  obtained.  Since df /d^tends to the order of &at  5^,—>0, df(0, t*)/ 
«^ Jf  -0 is easily proved.  As ^    fm(0)/£§ *~-l  in (41.1), the rela- 
tions (39.1), (39.4) and (38.9) lead to the expression, 

L L      *-' (41.2) 

Since the term (1-1*'/t*)m"2/(l+t* ,)2m"1 in (41.2) becomes 1 at t^-0, the 
integration by dt*' diverges with the order of log 0.  Namely, the function 
lr( £ , t   )  has the following features: 

fo t*> <fa> < I, 

**f<****>-co. 
jf* (41.3) 

In the case of similarity laws, Che correlation function of (20.14) 
can be expanded into a power series at the origin, and the microscale X-T 
defined by (18.8) is proved to have some nonzero value.  The meaning of 
this may be comprehended by the physical background of the similarity 
law of t^e chaotic motion of one kind of vortex having finite extents. 
When the cascade phenomena are considered. 

V o 
(41.4) 

is arrived at by (41.3). This is understood by the physical Interpretation 
of the cascade process by which m ^ 2 vortices are produced along the 
flow from zero extent as denoted in (39.4).   If the real states of 
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mechanism are clarified in the production of a vortex motion and, instead 
of (39.4), precise formulations are made of the growing period of vortices 
after the production period, the result Af ^0 will be obtained instead 
of (41.4). 

The functional form of f can be calculated by (38.9), (39.1), (39.4) 
and (41.1).  The evaluated curves of f versus §   are shown in Figure 64, 
according to several parametric values of t*.  The correlation of g defined 
by Q8.2) is evaluated in the same manner as the local similar solutions 
g, of Karmin-Howa r th, as shown in Figure 65.  Since the relation of (18.5) 
to the locally similar f and g  is known, f and g of the cascade process 
may also be proved to be connected with the same formula (18.5) of the 
continuity condition 

It is now difficult to survey the character of d£/h t*  by mathe- 
matical analysis.  In Figure 64 or 65, however, a rapid convergence near 
t*=0 is seen in f. or g. of the initial period to the characteristic for;n 
of the cascade process,with a sharp peak at the origin.  This tendency 
was anticipated by the characteristic  ^ ^f (0, t,v)/^^ ^c-oo of (41.3). 
In the decaying law of the cascade process. Figure 63 suggests a gradual 
departure from the linear-decay law of the initial period.  The correla- 
tion function f or g of the cascade process has a contrasting character- 
istic in this point.  Locally similar f  or g cannot be evaluated now 
in general cases of decaying turbulence.  HowWver, if an extended Karman- 
Howarth's solution is obtained in other cases than in Isotropie turbu- 
lence, the above-mentioned characteristic of the rapid convergence to 
the torm of the cascade process may be proved. 

In uniform turbulent flows behind a grid, measurements are made of 
the g-correlation for the sake of experimental convenience, for the most 
part.  For experimental comparison, three curves of g at t*=0,4, 1.0, and 
1.6 in Figure 65 are ^-awn versus ky/L  in Figure 66, where Lg is the 
integral scale similar to that definedSby (18.7).  Since it is difficult, 
on the other hand, to evaluate an exact value of Lg by experimental 
measurements, experimental data are plotted in Figure 66 with a suitable 
constant multiplied to the abscissa value.  In this figure, observed 
results of the characteristic sharp peaks of the correlation functions 
are almost covered by the theoretical curves of the cascade process. 
However, because of a rapid convergence to the cascade form shown in 
Figure 65, variations in relative forms of the theoretical curves are 
small, and it is difficult to check the time-dependent characteristics 
of the g curves by experimental results in Figure 66.  In some cases of 
the data, the   decayings of ( Ut /U )   are shown in Figure 63 at the same 
time.   Referring to Figures 63 and 66, we know that the decaying of 
intensity and the form of correlation of the Isotropie turbulent flow are 
generally supported by the theoretical curves in the region t*«0'>'1.6 of 
the Po;.sson process. 

In uniform turbulent flows behind a grid, the g correlation is 
observed to take usually a negative value at a large distance from the 
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* (42.2) 

By (42.2), the proportional relation 

* (42.3) 

is seen.  An important result is that the Poisson process in the physical 
picture of cascade phenomena has given a quantitative interpretation to 
the character of nonlinear terms in the Navier-Stokes equations. 

Seen from the curve of (M^/U) z in Figure 63, the value of A in 
the decaying formula (18.10) seems to have no singularity characteristic. 
Probably the singularity of f'^O) may have been cancelled by that of h1 

(0) in the expression of A ^ in (18.10).  Anyhow, it must not be over- 
looked that the definition of A by (18.8) holds only when the correla- 
tion functions have no singularity at k =0. 

Introducing the calculated results of f, g, and ( lil/U)~2 into 
(42.2), the functional form of h can be obtained.  Near the origin ^=0, 
reliable results of computation cannot be expected because of the above- 
mentioned singularity characteristic of h.  General characteristics of the 
evaluated results of n» can be seen in Figure 67, although the derivation 
may have insufficient accuracy because of the numerical differentiation 
of f or g in (42.2).  The nonzero value of the curve of h at t*=0 means 
that even at the beginning time of t*=0, the vortex chaos motion is not 
identical with the state of the initial period, although the cascade 
process has begun at this instant.  Then, the curve of h increases 
gradually with t*^0, whose tendency is similar to the decaying curve 
which gradually deviates from the linear-decay law, unlike the case of 
the double correlations. 

Generally, it is not easy to make a measurement of the triple corre- 
lation by means of a hot-wire anemometer, and there are not many experi- 
mental data, even in the simple flow of isotropic turbulence.  Further, 
it is difficult to check the variation of h versus t* by determining the 
value of t* experimentally.  Due to an example of measurement shown irr 
Figure 68, it is ascertained that the functional form of h increases 
gradually along the flow.  Fortunately, the previous measurements were 
made on both h and f at the same time.  In the same manner as in Figure 
66, experimental results of f are compared with the calculated curves at 
t*"0.4, 1.0 and 1.6, and using the same abscissa, comparisons of h are 
made.  Figure 69 shows the results.  For the double correlation f, there 
is good agreement, as in the case of g.  For the triple correlation h, 
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irregular  state.     On the  other  hand,  when the  scales   of  vortices are 
compared with   the breadth  of   flow,   directional   effects   remain  in  their 
disturbances,   and  the chaotic motion does not  attain  a  completely  irreg- 
ular  state.     The  scale  and  energy  of  vortices  produced   on  the cascade 
phenomena  are   far  smaller  and weaker  than  the previous   vortices.     Also 
these  smaii   vortices  are  easily  disturbed  by other  vortices,   and  they 
come easily   into  the completely  irregular  state.     Even  if   the  large- 
scale vortices   o( =1 of  the  initial  period  are  in an   incompletely  irreg- 
ular  state,   newly produced  vortices  easily tend   to  have   the  condition 
of complete   irregularity.     In  a   small   area  near   the  production place of 
small  vortices,   effects  of  the mean pressure gradient  or  of mean velocity 
pre file  of   the   field of  flow  are   small.     However,   small   vortices  are 
produced   everywhere  along   the   flow.      Thus,   small   vortices   produced  by 
the  cascade  process  have  a   tendency   to  attain   the   state  of   Isotropie 
turbulence,   regardless  of  their  position  in  the   field  of   flow. 

From  spectrum analysis,   the  high-frequency  region  of   the  velocity 
fluctuation  tends   to be   in   the   Isotropie   state  even   if   the   lower-frequency 
region  is   in  a   shear-turbulence   stale,   as   shown  by   experimental   evidence 
in Figure   70.      Of  course,   this   fact  holds when  the   primary   vortices  have 
the  condition  of   the  Isotropie   turbulence.     Thus,   it   is   significant   to 
generally  assume  the  isotropy   to   the high-frequency   fluctuations, 
regardless  of   the  states  of  the   low  frequencies which  have  almost  all   the 
fluctuational   energy.     This  assumption  is  the conception of   the   locally 
Isotropie   turbulence proposed   by  Kolmogoroff   (reference   16). 

44.     KOLMOGOROFF'S THEORY 

According   to   the conception  of   the   locally   isotropic   turbulence, 
Kolmogoroff  proposed  the  following basic  assumptions   and  proceeded with 
mathematical   formulations   (references   16,   62,   and 63).     Namely,   velocity 
fluctuations,  which have  far   smaller  scale  length   than   the   integration 
scale Lf  of   (18.8)   or which have   far  shorter  frequency   than   the  time 
interval  L^/t*.,   are  all   fulfilled  with   the conditions   of  i^^ cropic   turbu- 
lence  and  of  a   statistical   equilibrium.     A  large-scale   region  of  the 
components  of  velocity  fluctuation having a comparative  value  of Lf or 
Lf/M* need  not  be  assumed. 

Only  the part of velocity  fluctuations of  the   local   isotropy shall 
be considered.     At  first,   the   following  tensor  expression B of  the corre- 
lations   of   the  differences  of  velocity-fluctuation components   is  taken 
at  two points  of A and A'  with   a   short distance  k   : 

r 
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(LL-U')(U-U'J     (U-U'XV-V')     (u-u'Jd/s-ur*) 
B=(    (v~v'j(u-u')    (v-v-'Hv-v4)    (v-v'j(ur~v/) 

(ur-ur')(u-uf)      (w-u/'Xv-v')     (u/-w')(w-t*) A441) 

When   B, ,   and   B       jre   taken   as   the   correlations  of  differences  of  velocity dd nn J 

fluctuation  components,   parallel   and   perpendicular   to   the  AA  -direction, 
respectively,   tlu-   relation 

/ iiix    &*£?■  4*** 

3 = ^^ /   tyx    *&   *?**    ] + sJ0/o 

\   '&£.£#,     Kz&y'   ^Ms 

can be obtained in the same manner as the formula (10.4),and the contin- 
uity equation leads to 

as in (18.5).  When f, g, h, and others are taken as the double and triple 
correlations as shown in Figure 25, the following formulas owing to the 
local isotropy can be easily obtained: 

Bdd = *uO-f)} 

BdJd " -/-Zu3A, 

•      m      » 0 

(44.4) 

,9), which holds in 
isotropic turbulence, can be transformed into 
The Karman-Howarth's propagation formula (18.9), which holds in the locally 

r (44.5) 

with   substitution of   (44.4).     Due   to   the basic  assumption  of  stationary 
state,   Bdd  or  BJJJ  becomes   a   function of only  k     and   (44,5)   takes   the 
expression of  an ordinary  differential  equation with   an   independent 
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variable  k   .     With  the  boundary condition of  B..^  ■ 0  at k »0,   (44.5)   can 
be  integrated  into 

±o .. JBcM .    / du* j> 
(44.6) 

The   above-mentioned   equations   reflect   the   kinematical   characteristics   of 
the   locally  Isotropie   turbulence. 

From   the  previously  mentioned   supposition  of   the   cascade  phenomena 
of  a   vortex chaos motion with   the  relation o^   (m)=m of   (39.1),     one may 
arrive  at   an  interpretation   that   the  fluctuating  energies  are   incessantly 
transferred   from  low-frequency   region   to  high-frequency  region,   with   some 
of   them being  dissipated   into  heat.     Now,   when   the   transferred   fluctuating 
energy  from  the   lower-frequency  region  is   denoted   by   £  per unit  mass   of 
fluid   and   in  a  unit   time   interval,   then ^   is   taken   in   the  phenomenologica1 
study   as   a   principal   quantity  characterizing   the   cascade  process   of   the 
wave   numbers,   just  as  was   the   transition  probability  p*   in  the  physical 
picture  of   the cascade  process   of  a  vortex  chaos  motion.     On   the  other 
hand,   the  kinematic   viscosity   Y   represents   the  dissipation of  energy  by 
molecular  viscosity,  which   in  the  previous  physical   picture corresponds   to 
the   suffix   fl\  («m)   of   the   kind   of  vortex motion.      Thus,   in  general,   situa- 
tions  of  the cascade process may be decided by   the   two  basic quantities  of 
£     and    y   ,  which   is   the   first  hypothesis   of   the   theory  of   locally 

Isotropie   turbulence  proposed  by  Kolmogoroff.      Namely,   this  hypothesis 
is   transformed  from  the  previously mentioned   interpretation of  the cascade 
phenomena  of  vortex chaos motion  into   the  simplest  quantitative  expression 
in  the  cascade process  of   the wave number. 

When  -^jj  and  v,    are   taken,   respectively,   as   a   representative   length 
and  velocity  expressed  in  the   two quantities  of   S   and     V   ,   they  arc 
expressed   as: 

^ - 

J3. 

v* = (ye)*. 
(44.7) 

Since   B^j   or  B...   is   a   function  of  k    only,   the   expressions 

(44.8) 
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are   obtained  by   easy  dimensional  analyses.      In   (A4.8) , y^J^ or    J&ofefaf ^s 

a   definite  nondimensional   function  of  a  nondimensional   length  k   /I, . ö r     k 

^C    = m of   (39.1)   is   proposed   as  a   basic   assumption   to  derive  quanti- 
tative  results   from   the   interpretation of   the  cascade  phenomena  of  vortex 
Chaos  motion.     Due   to  this   assumption,   dissipation  of  energy by molecular 
viscosity becomes  more   intensive  as   the   generation m of   the  vortex motion 
increases,  while   the   largest-scale  vortices   of  m=l   have  no  effect   of 
dissipation.     Namely,   in  comparatively   large  vortices  of  young  generations 
the   effects  of  viscosity   are   small.     Thus,    from  the standpoint   of   the   cas- 
cade   process   of   the  wave  numbers,   statistical   characters   at   A-   and   A'- 
points   depend  chiefly  upon  £"   rather  than   Y   when   the  distance  k     is 
larger   than  1, .     In  an  approximative meaning,   the   statistical  characters 
in   these circumstances  may  be  assumed   to  be  decided  by    S     only,   reflecting 
Kolmogoroff's   second   hypothesis  of   the   locally   isotropic   turbulence. 

According  to  Kolmogoroff' s  second  hypothesis,   B,,  or  B.,,   in   (44.8) 
must   not  contain   the   term     /    .     If  n   is  made   2/3   in  the  expression   of  B^j« 
(Y5)^(kr/lk)n,   the   exponent  of  (  Y£, )   vanishes   in   (44.7).     Thus,  with  a 
constant coefficient  C.j  or C , , ,,   the  following  expressions  are  obtained: 

(44.9) 

C i 
From  (44.9)   and   (44.4),   the expression  f=l-J|Jä( £ V )'is  derived. 

Figure   71  indicates   that   in  the solution of   f   in Figure 64,   the  region 
approximated by   (44.9)   is   increased  as  small   vortices  are produced  by   the 
cascade  phenomena. 

45.      SPECTRUM FUNCTION  IN THE   ISOTROPIC  TURBULENCE 

Characters of  the  locally  isotropic   turbulence discussed  in  the   last 
section in the  form of  spectrum functions  shall  be  expressed  according  to 
the  analyses of Heisenberg   (references  64  and  65).     The propagation 
formula   (19.12')   is  expressed   as 

4 

(45.1) 
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if  every  term is  integrated  by  k.     As mentioned   in  Section  19,   the   terms 
E and W are  derived  from  the   viscous  and  inertia   terms,   respectively,   in 
the Navier-Stokes  equations.     Thus,   by  the supposition of  the cascade 
process  of wave numbers,   the   first   term of   (45.1)   is   regarded  as   the 
energy which   is  transferred   from  the  region of  frequencies   lower  than  k 
t;o   that  of   the higher  frequencies,   and   the  second   term  is   regarded  as   the 
energy  being dissipated   into  heat  by  the effect   of  viscosity  in  the  region 
of  frequencies higher  than  k. 

In  order  to derive quantitative  results  from  the  interpretation  of 
the  cascade  process  of wave  numbers,   the  energy   transfer   from  lower   to 
higher   frequencies  implied   in   the   first  term shall   be  compared  to  a 
dissipation  phenomenon by  a   virtual   viscosity.     When   the   energy  transfer 
is denoted  by 

0 (45.2) 

as  in  the  second  term of   (45.1),   /" ^(k)   is  similar   to  one  kind of kinematic 
viscosity  varying with  k.     Then  the  problem becomes  one of determining   the 
functional  form of   V (k).      Since      ^„(k)  concerns   the whole region of 
frequencies  higher than k,   it   is  appropriate  to  assume  the  integration 
formula        /     f'tk')   dk'   to   Vu(k).     When   f   is   assumed   to  be  a   function 
of  E(k)   and  k,   such  an  expression  can  be derived   by   dimensional   analyses, 

i 

yH(*) = c) jEdk)/*5dA, 
i (45.3) 

with   a  numerical   constant   c,   because    V^ ,   f',   E,   and  k  have  their  dimensions 
respectively  of cm    sec"^-,   cm^   sec"^-,   cmJ  sec"^,   and   cm~l. 

When  the  region of   large   values   of  k  is   taken,   the   left-side  term  of 
(45.1)   expressing a decrease  of  total  energy can  be   interpreted  as  the 
rate  of   transferring  energy    £  .     Thus,   irrespective  of k,   (45.1) must   be 
a  constant,   and  the expression 

(45.4) 

is derived from (45.1), (45.2), and (45.3).  When the viscous term is 
neglected in a region of smaller values of k, the form 
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is  obtained.     These  formulas  of  (45.4)   and  (45.5)   are expected  to  hold in 
the  region of wave   numbers   of  higher  frequencies. 

In the  region  of   low frequencies,   other  considerations  are  necessary. 
Owing  to  the  interpretation  of  the cascade   phenomena of vortex chaos motion, 
the  vortices  of   oC  =1   are  predominant  in  the  region of low frequencies.     In 
the  cascade  process   of   wave  numbers,   one  must  give  considerable   thought   to 
the  energy of velocity   fluctuations,  rather  than to  the energy   transfer £, 
or   the  dissipation    IT   .     Heisenberg proposed  some  evaluations  according  to 
such  an  interpretation.     Taking D„ as  a momentum presented by a   standard 
length  and velocity,   he  combined DJJ,   t,   and k  into  ä nondimenslonal   quan--^ 
tity k J Dut.     Then,   the  noMdimensional  expressions  of  the  two  terms   t^Dji" 
E(k)   and tzDJj1T(k)   in   (45.1)   must be  functions  of only k  J   D t,   and  (45.1) 
takes   the  form of an ordinary differential   equation with a parameter  D /Y • 
The  first  term of the  expansion of  the solution becomes 

^ 
E 0*0 ^ DH ^ • 

(45.6) 

Namely,   in a region  of   low frequencies  of  Isotropie   turbulence,   the  charac- 
ter of  (45.6)   is  related to  the  spectrum function. 

The above-mentioned results   (45.4),   (45.5),   and  (45.6)  concern   local 
characteristics  of   the   spectrum function of  Che  Isotropie  or  the   locally 
Isotropie   turbulence.     The regions  where  these  formulas are  adapted  are 
called  the viscous   (C) ,   inertial  (B),   and  the   lowest-frequency  subranges 
(A),   respectively,   according  to  the meanings  of  their  derivations.     Figure 
72  shows  a conceptlonal  diagram of the regions.    Figure 73 shows   observed 
results  of the one-dimensional  spectrum F^(k^),   in which  the  formulas  of 
(45.4)   and  (45.5)  are used;   and  local  states  of  the  real  spectrum function 
are  seen to be represented by  these  formulas.     However,  due  to  the   pheno- 
menological  studies   of   the cascade  process  of  wave-numbers,   determination 
of  the  spectrum  function cannot be derived  in   the whole region of  the wave 
numbers.     To  derive  a correct  spectrum or  correlation function In  the 
Isotropie  or  the  locally  Isotropie  turbulence,  more  precise mathematical 
formulations  must be given  to  the  physical  considerations  of   the  cascade 
phenomena of vortex chaos motion. 

An introduction of   the  Polsson process  In  this  chapter Is made   In 
order   to  survey  the  cascade   phenomena,   particularly  near  the  region  of 
breakdown of  the  initial-period  law.     Expressions   (45.4)  and  (45.5)   of  the 
results  of phenomenologlcal   studies of  the  locally  Isotropie   turbulence 
can  also be adapted  In  this   region.     The beginning of  the cascade  process 
from the initial   period  is  regarded to be   particularly  important,   because 
in  the real  state of decaying  turbulent  flows,   turbulent energy  decreases 
rapidly  far downstream,   and  It becomes  difficult  to make an experimental 
measurement  there.     From only  an ideal  viewpoint,   however,  discussions  are 
possible on the ultimate  stage of the decaying  turbulence  far downstream. 
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In the vortex chaos motion of   large values  of   the  generation m" 0< , 
the effect of  viscosity becomes  intensive,   and  the  inertia   force  is neglec- 
ted  in  the  ultimate  stage of  the cascade process.  When  the   inertia   term in 
the propagation formulas   (18.9)  or   (19.12')   is neglected,   definite  analyses 
become possible.     Namely,   (19.12')  without W  is  integrated   into 

EQt) = EOk^jHepl-ZY&a-t')}, 
(45.7) 

which is further simplified into 

E(K ti'Ft #'*P (-*y**(t-1')} J 

rj 

(45.8) 

taking only the first term of the expansion of E(k, t').  The total 
Intensity VL   m   %" }       Edk becomes 

If the fourth moment of the correlation J is assumed to be independent of 
t, (45.9) expresses a simple formula of the decay of turbulent intensity, 
the analyses proposed by Batchelor in the final period of decay (reference 
55). 

1 
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CHAPTER EIGHT.      SIMILARITY CONCEPTION  IN  THE NONDECAYING TURBULENCE 

46.     CHARACTER OF NONLOCAL EXPRESSION 

The   following  Interpretations   are  related in Sections  7  and 8 for  the 
structure  of   the  nondecaylng  turbulent   flow along a wall.     In  the  iimedlate 
vicinity  of  a wall,   the effect  of molecular viscosity   is  conspicuous,   and 
a  thin  layer  of  the viscous   sublayer exists with the critical  Reynolds 
number  of   the   lower  limit of  stability.     Outside the  sublayer,   the stabil- 
ity condition  is  broken and  strong vortices  are  incessantly  produced along 
the wall.     These   primary vortices may bring about  descending,   small,  weak 
vortices   by   the cascade  process,   and it  becomes  necessary   to  imagine  an 
extraordinarily complicated chaotic  motion of all  these vortices,  unlike 
the case  of  decaying  turbulence. 

To  give mathematical  expressions  to  turbulent  Intensity  and scale 
based upon  this  physical   picture,   the descending vortices   are  first neg- 
lected because of   their  small  effects  as  compared  to  the  strong  primary 
vortices   that  are   produced continuously  along the wall   above  the viscous 
sublayer.     Namely,   in  the analysis  of nondecaylng  turbulence,   the expres- 
sion of  the  ideal  state shall be  taken.     Thus,   the  problem is   the extension 
of  the  initial-p   -iod  law of  the  decaying  turbulence  into  the  case of non- 
decaying   turbulence. 

When  an  A-polnt  is  fixed in a  nondecaylng  turbulent   flow,   many kinds 
of  strong  vortices   produced everywhere upstream run away  near   the A-point, 
even if only   the   primary vortices  are  taken into account.     Thus,   for  the 
intensity  of   turbulence,   an  ideal-state  expression of   (13.9), 

is  deduced by   taking the  function of P* of  (13.6).     Suffix 1  denotes  the 
position  of  production,  and  the  operation    4*        is made upstream from the 
A-point. -4's, 

It  is   too difficult  to  derive   the  functional   forms  of P*  and V*  in the 
D*-domain by  making  strict analyses  of  the hydrodynamical  eqaations of 
motion.     As  mentioned in  Section 8,   however,   at  least   some  strong vortices 
may be  in  an   incompletely  irregular   state with  large  scales comparative 
with  the  breadth of  the flow.     In  (46.1),   it  is  difficult   to assume  that 
fÖPvanishes,   even  if  there are many   small  vtrt:lces  in  the completely 
irregular   state.     Namely,   in  the case of  a nondecaylng  turbulence,  descrip- 
tion of  the  ideal   states  of  the   primary  vortices can be compared to  that 
of  the cascade process of decaying  turbulence. 

When  the x-axis  is taken parallel  to  the flow on  the wall  of zx-plane 
and the thickness of viscous  sublayer is neglected,   suffix 1 is  designated 
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by the x-ordinate.  If the coordinates of the A-point are x, y, z and the 
nondimensional ordinate of x is £      ,   then the position of production 
discriminated by i should be expressed in a differential value £'JL£.      If 
the position of the beginning of turbulence is denoted by £0, £0^£'££  is 
obtained, and  ^   in (46.1) shall be replaced by the integration 

It is difficult to derive the different kinds of vortex motions 
produceu from the wall by the effect of a viscous sublayer, from the 
primary vortices of o^  =1 in the case of the decaying turbulence, because 
the decaying turbulence is the case where the vortices produced by the 
separation of boundary layer are carried apart from the body, aid the 
nondecaying turbulence is the case where these vortices are still carried 
along^the wall of a body.  In the expression of the ideal state of (46.1), 
each V*-function is written with a decaying term separated as in (22.2) 
of the initial-period law of the decaying turbulence.  Thus, (46.1) becomes 

G(tS')* jacSFtf?, 
(46.2) 

W 

where tjf'  is a time interval in which the vortices produced at a location 
of £*   come to the A-point. 

Expression (46.2) is an extended expression of the initial-period law. 
However, selection of the initial constant C according to a position ^f' is 
a difficult problem, even if the kind of vortex is designated by o^ »1. 
Unlike the cascade phenomena in the decaying turbulence, it may be inappro- 
priate to assume that the vortices at ^^ g'-teLf* are produced by taking a 
part of the energy of the preceding ones at 34~i££*, £*•     They must be 
produced independently along the flow and have their values of C of the 
same order.  It is also difficult to elect only one kind of conspicuous 
vortex in (46.2) as the primary vortices in the cascade process.  The 
effect of the integration $gjJL§' is  generally caused by many kinds of 
vortices produced in a fairly wide region upstream, and the effect of vor- 
tices produced far upstream may be decreased with the decaying term G(tjp1/). 

In the decaying turbulence, statistical character at an A-point in the 
field is dependent on the initial condition of the primary vortices and 
on the position of the A-point.  In the nondecaying turbulence, even if an 
approximative description of the ideal state is taken, turbulent intensity 
at an A-point is not decided alone by the local value x, y, z of this 
point, but is also dependent upon the integral effect upstream.  This 
nonlocal description is a principally important character of the nondecaying 
turbulence and means also that along the wall, turbulent flow comes to 
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forget its history.  This characteristic should be extended to the mean- 
velocity profile through the Reynolds equations.  Because of this nonlocal 
character, previous empitJal attempts were not necessarily successful in 
characterizing the mean-velocity profile of turbulent boundary layer in 
an arbitrary pressure gradient by means of a local value at the section 
alone. 

In the expression (46.2), every decaying term G (t^') is proportional 
principally to ( jf - j^ '  )"1 and is excluded from the integration ///TJ**' 
dQ*-/ as in the case of the initial-period law.  These terms are further 
integrated by j/ 0C £'     into a function depending upon the initial values 
of £0    and if ' of the A-point.  Of course, the distribution of turbulent 
intensity along the x-direction is not decided without an exact evaluation 
of (46.2).  However, if Jf is taken far apart from Jf«, , vortices pro- 
duced near £<,    have little effect at £       owing to their rapidly decaying 
feature of the terms G^.  Therefore, although £     is taken more remotely 
from ^o» the integrated value of jf cC£' does not decrease rapidly, but 
preserves nearly a constant value. * Experimental data shown in Figures 
6 and 15 may speak of the above-mentioned interpretation. 

47.  SIMILARITY CHARACTER OF THE CORRELATION TENSOR 

In the formula (46.2), functional forms of P*^'   and F^ in the D^/- 
domain depend generally on the situations of flow upstream near the location 
of the A-point.  As the upstream effects, one can take thickness of the 
laminar boundary layer from the stagnation point, location of the transition 
to turbulent flow, pressure distribution by the free-stream, roughness or 
curvature of the wall and others. 

From the standpoint of the study of a fully-developed turbulence. It 
is sufficient to treat only the region far downstream from the transition. 
In the formulas of turbulent intensity such as (46.2), effects far upstream 
are decreased rapidly by the decaying term G> and the integration j£ cC£' Is 
replaced approximately by f' pL3 ' For the turbulent scale, a vortex 
motion, generally, extends proportionally to t-, namely, to  { ß   -_^/ )^. 
Owing to the rapidly decaying intensity, however, the scale of vortices 
produced far upstream may lose their meaning In the chaotic motion of strong 
vortices of the nondecaying turbulent flow. 

In the two-dimensional turbulent wake In a uniform flow of the decaying 
turbulence, the process by which the initial-period law Is reduced Into the 
formula of similarity preservation was Interpreted.  In the nondecaying 
turbulence, the character of similarity preservation along the flow shall 
be considered by taking a simple case of the turbulent boundary layer along 
a flat plate.  In this case, the pressure distribution of the free-stream 
has no effect on the vortex chaos motion in the boundary layer, unlike the 
case of a turbulent wake In a uniform flow.  A vertical section to the flow 
is taken at a fixed point x on the plate.  In turbulent boundary layer, 
production of strong primary vortices is limited to the surface of the 
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plate, and the complicated vortex chaos motion passing through this section 
is confined in a finite region near the plate.  Referring to this region, 
a scale length of the boundary-layer thickness is determined, usually 
denoted by 

sa) 
(47.1) 

as  a   function of x. 

When   the   effects   far  upstream  are  neglected   in   (46.2),   turbulent 
intensity   at  an  A-point  of   the  co-ordinates   x,   y   is  approximated   by   the 
expression, 

(47.2) 

In (47.2), it is difficult to determine the functional form of K^ in 
the lÄ-domain.  As shown in Figure 74, however, the function I tends to 
zero upstream owing to the decaying term G , and the integration of (47.2) 
shall be taken as an idealized expression, neglecting the effects far 
upstream. 

Even at a given section of x, functional form of I( if') depends upon 
the value of y.  But, in a flat-plate boundary layer flow, pressure gradi- 
ents of the free-stream and others have no effect on the function I( C') 
in (47.2) upstream from the x-section.  Thus, states of vortex chaos 
motions are determined only by the interaction of vortices outside the 
sublayer upstream.  Further, in a fully developed turbulent" boundary layer 
along a flat plate, the production condition of the primary vortices outside 
the sublayer cannot be assumed to vary along the flow.  Therefore, even if 
another section is taken at x., it is difficult to find a different charac- 
ter in the two chaotic motions of vortices produced before the two points. 
For the scale of turbulence, vortices produced far upstream with vanishing 
intensities have little effect on the boundary-layer thickness  §  .  Thus, 
in a fully turbulent state, S  may also be dependent chiefly on the vortices 
produced in a finite region upstream from x. 

In the "X.  ^-section, such an A-point is taken that has the relation 
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(47.3) 

where      S|      is   the  thickness  of  the   layer  at    Xi  -point.     Then,   at   the  two 
points,   functional   forms  of  I  become   identical  through   the   above-mentioned 
discussions.     Thus,   by   (47.2),   the  following  expressions  can  be  obtained 
for  the  components  of   turbulent  intensity: 

irV^p= V-*atjy,) =Cy?C?)v0*, 

-ur^Zj?) = f4/*<xtJy,) = C*>*fyWo*, 

iUüCx^) * ütuCxtf,) = Czu fy) yfj 

(47.4) 

2 2 In the above expressions,V  derived from F  is a representative fluctu- 
ating velocity decided by the velocity of the free-stream. 

The intensity formula (47.4) corresponds to the initial-period 
similarity-law in a uniform decaying shear turbulence in which the primary 
vortices preserve the similarity with the decaying term.  There is no need 
to assume local similarity along the flow for the vortices produced at a 
point if' in (47.4).  Even in the simple case of a flat-plate boundary 
layer, it is difficult to assume a similarity character of disturbance by 
which vortices produced at J* are affected by the surrounding vortices along 
the flow, and probably the functional form of ij/a» in the D*-domain varies 
along the flow.  It is characteristic that the similarity preservation in 
(47.4) has been obtained only by the distribution of I along the flow. 
This similarity is in contrast to that of the cascade process of the 
decaying turbulence, in which local similarities of all kinds of vortices 
are combined into a nonsimilarity character through the Poisson process. 
Figure 75 is an example of measurements of the profiles of u-intensity along 
a flat plate far downstream from the transition. 
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48.  TURBULENT FLOW OF A SIMILARITY PRESERVATION 

In addition to the flat-plate boundary layer flow, the case will be 
considered in which the expression (46.2) is reduced to a similarity for- 
mula, using a fully-developed pipe flow with a constant cross section. 
As is well known, the flow has no undisturbed free-stream, and has a 
constant pressure gradient along the flow, retaining an energy balance 
with the surface friction.  The situations of flow upstream from two 
sections of x and Xi are assumed to be the same as in the case of a flat- 
plate boundary layer when the effects near the inlet of pipe are neglected. 
Namely, it is difficult to imagine a different character along the flow in 
the vortices produced outside the sublayer which probably leads to the 
conclusion of nondecaying similarity as expressed in (47.4). 

It is too difficult to see the interrelation between the initial 
constant C of the primary vortices produced by the effect of viscous sub- 
layer and the condition of the mean states of flow.  However, because of 
the nature of viscous vortex motions, the constant value may depend prin- 
cipally on the Reynolds number of the mean flow.  Figure 76 shows a 
similarity character of two cases of pipe flow having the same value of 
the Reynolds numbers. 

As mentioned in the last section, similarity preservation in the case 
of a flat plate comes from an invariance of situations of vortex chaos 
motions before two arbitrary points along the flow.  In the general case of 
a fully developed turbulent boundary layer along a smooth wall, the 
pressure gradient of the free-stream has an important effect on the vortex 
chaos motion in the layer.  Thus, if the pressure gradient gives relatively 
the same effects upstream before two points of x and x, , vortex chaos 
motions passing through these sections take on characteristics of the 
situation.  Therefore, the turbulent intensities have relatively the same 
profile, with local values of the intensity  -%/• (x) • 

It is difficult to ascertain the exact mathematical expression by 
which pressure force of the free-stream affects the vortex chaos motion in 
the layer.  It is certain, however, that the effect is caused by the 
pressure force dLf^/d.X' itself, and as the first approximation it may be 
natural to specify the value of dP0/dx.  According to this supposition, a 
turbulent boundary layer with a constant dP /dx like the uniform pipe flow 
was made, and similarity character in the profiles of u-intensity along 
the flow (reference 68) was checked.  Figures 77, 78, and 79 show the 
results.  Although they cannot be taken as strict evidence of the similarity 
in this case of flow, these results may prove that the profiles of turbulent 
intensity are determined by the integral effects upstream, at least for 
the nonlocal character of the flow. 

49.  PROPORTIONAL CHARACTER IN TURBULENT INTENSITY 

Discussions in the previous sections concern the distribution of 
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turbulent intensity along the flow.  Now, under the idealization of an 
extended formula (46.2) of the initial-period law, characters of turbulence 
across the flow will be surveyed.  In Section 25, it is interpreted through 
the initial-period law that every value of the components of turbulent 
intensity has a tendency to become equal to each other independently of 
their position.  The discussion shall be applied to the case of a non- 
decaying turbulence. 

A fully-developed turbulent boundary layer along a flat-plate will 
simplify the explanation.  When the vortices produced at J~     -point 
upstream are taken into account in the vortex chaos motion passing near a 
fixed A-point in the flow, discussions referring to the two-dimensional 
turbulent wake in Section 25 may be applied.  Namely, in the orientation of 
filaments of the primary vortices produced from the wall, an intensive 
tendency can be assumed, to keep always parallel to the zx-plane of the 
wall because of the existence of wall.  Owing to the random character of a 
vortex chaos motion, it is difficult to point out in the zx-plane a special 
orientation of the distribution of vortex filaments, and the discussions 
still hold for a group of vortices produced at a point of ^f' in a two- 
dimensional wake.  When the coordinates of the A-point are denoted by Jf , 
■^ , the function 1 ?r  ( Jj ') in (47.2) due to the ^/ -vertices is written 
as 

IvCt') = [{4C* VJ JP,*, (s, e; *}) fa *)c**0äBäs [***£ P*CtMA] 
•   • _ rr 

ZTT 

/J*U*UB] aWrh 

P^CV *%*/'*)> 

(49.1) 

in reference to (25.i) and (25.2).  For brevity of description suffix £ 
is omitted in the function I. 

When the reduction from (25.2) to (25.6) is applied to the ?'- 
vortices, the same result as (25.8) is obtained for these vortices.  Namely, 
(25.3), (25.4), and (25.5) lead to the expression 

Ifi') * a^a*? Firtyi^ty <?&%'), 
zir 
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(49.2) 

If VLj'  Is made to indicate the part of value u*   due to the ß' 
vortices, the same expression as (25.6), 

U^iJ^hirfTZiJ,   *  a^E^tyj 
(49.3) 

Is obtained. Therefore, when u'j and Ijf are taken as the upper and lower 
limits, respectively, of £?-/ ( Jj?) in >^ =0 ^ 1, the following relatio 
is also proved by (25.7): 

(49.4) 

2 
Thus, S1-/('7) becomes a constant value in 1 ^^ 0. 

In a fully-developed boundary layer flow, u-intenslty at the A-point 
is written as - 

Ufty*  [ Iy(f')<£$', 
(49.5) 

by  (47.2).     Expression  (49.2)  can be  transformed further  Into 

.f 
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£/V-//«'/'%4:^^ 

(A9.6) 

Thus,   the  same  formulas  as   In  (25.6)   can be obtained for  the components  of 
turbulent  intensity. 

(49.7) 

where  a,,   a2,   and a3  are  constants  determined by   the  integrations  of 
y.^^ tf/       containing  a-ie/f a2E/   an(^ a3€/ * 

As  in the case of  a  decaying turbulence,   the  relation  (49.4)   for  the 
Jf' -vortices  is   proved by  the  integration of  a  function which is  multi- 
plied by cos20=l ^O.     Expression  (49.7)   is  derived  further by  the  integra- 
tion of ^«(Z'multiplied by   6?*/ of  the  relation  (49.4).     Therefore,   for 
the  same reason,   the  relation 

/ > u'r> u'*: £?(:?)^Jl'>4'r> o 
(49.8) 

is  obtained with u'   and  1',   respectively,   the upper  and  lower  limits  of Sf 
(if).     Namely,  with repetitions  of an integration containing  trigonometric 
functions,   the values  of    ££ »  £/*>   and ^gradually  approach a constant 
value  of 0"^!.     It  is   significant  that  in  the  nondecaying turbulence, 
the value of   £2  is  supposed to have  a character  more  independent  of 

?4     than  in the case  of  a  decaying  turbulence. 

The  above-mentioned concerns  the  simple case of a flat-plate  boundary 
layer  flow.     The  essential   point of  discussions,   however,   is  the  repetition 
of  integrations  for  the vortex chaos motion,  which holds,  obviously,   in 
other  cases of nondecaying  turbulence.     In  the case of a pipe  flow,   for 
instance,   such a  formula as   (25.8) will be  obtained in the  same manner. 
Figure 80 shows  examples  of  the measurements of  the proportionality charac- 
ter.     By comparison with Figure 41,   the conspicuous convergence  in  the 
case  of  a nondecaying  turbulence can be  seen. 
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50.  FREE-BOUNDARY PHENOMENA 

To derive quantitative results from the extended formula (47.2) or 
(49.1) of the Initial-period law, functional forms of every Pj/ and F */ 

f      must be known, and the integration Z^^' is evaluated as a function of 
■^ .  In this section, some elementary characters of the P*-function will 
be discussed.  When 

•^      Off   9 

(50.1) 

is written like (13.6), P* as a function of TJ   means the probability with 
which the £   -vortices are mixed in all the vortices passing through the 
A-point at   {   ß , y    ). 

The vortex chaos motion is considered to be passing through a section 
at £   .  Near ^ »1, the value of Rk may be large far upstream from the 
Jf     -section, and near P7    «0 it may be large just before the section. 
This is concluded from the existence of a viscous sublayer which adheres 
to the wall.  Large-scale vortices produced far upstream may be carried 
near the boundary of the layer, and small-scale vortices produced just 
upstream may be conspicuous near the wall.  At two points of A and A' 
taken near 77  «1 and 0, respectively, in the ^"-section, their P*-functions 
may present such forms as shown in Figure 81. 

For every M^-function in the D*/-domain, a functional form must be given 
a priori.  As in the case of the decaying turbulence, it may be appropriate 
to take the first approximative expression as the Gaussian distribution, 
as (26.6).  In Section 26, the intermittency factor f*  of (26.1) is proved 
by the Gaussian expression of the P*-functlon to distribute with the 
Gaussian integral form as (26.7).  This character can be applied to every 
intermittency factor T  of  the ^'-vortices.  Therefore, if observations 
are made on the distribution of ^ near the boundary of a turbulent 
boundary layer, the Gaussian-integral form caused by representative large- 
scale vortices must be detected.  Examples of the measurements shown in 
Figure 82 may prove the above-mentioned suppositions. 
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CHAPTER NINE.     TRANSFER THEORY  OF THE  NONDECAYING TURBULENCE 

51.      DISTRIBUTION  OF  THE  MIXING LENGTH 

The  significance  of   the   transfer  theory  viewed  from  the  statistical 
theory of  turbulence   is   related  in Chapter  Six.      In  the  case of   the  non- 
decaying   turbulence,   it  becomes  difficult   to  derive quantitative   results, 
even  of  the  velocity   fluctuations,   from  the   formula  of  the  extended   initial- 
period   law.     Thus,   in  this   case of  flow,   the  transfer  theory  is   taken  to be 
especially  important,   and   the  scope  of  application must  be  extended  by 
making   the  foundations   clear,   depending  upon   the   discussions  of   vortex 
chaos motion. 

Vortex chaos motion  in   the nondecaying  turbulence presents   the   shear- 
turbulence  state of an  incompletely  irregular  character,   and   the  background 
of   the momentum-transfer   theory mentioned   in  Section 30  still  holds. 
Namely,  when the mean-velocity profile  in a   section is distorted  across   the 
flow,   the  formula   (30.5)   of  the   turbulent   shearing  force  and  the  coefficient 
are written as 

E=fvJ\ 
(51.1) 

and when Prandtl's mixing length of (30.9), 

£*~   &£.    /'* 

is   introduced,   the  formula   (30.8) 

(51.2) 

7= fj*iäIliäS. 
<   r* UyJuy- (51.3) 

is  obtained. 

Determination of S or ji across a nondecaying turbulent flow must 
be made depending upon the basic physical interpretation that the primary 
vortices  are produced  continuously along  the   wall.     Namely,   the  value  of 
S     or   4   at  an A-point must  be estimated   for  every group of vortices 

produced  upstream.     In  the  case of nondecaying  turbulence,   however,   two 
quantities of    1/   and  -/   of   £   must  be estimated   for every      ^/ -vortex, 
together with  the mixing  ratio P*£'     , whose  evaluations  are difficult. 
On  the  other hand,   the  correlation coefficient  uv/V    in   (51.2)  which   is 
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expressed in a-j 6 ^C f) / C1-^J( V^2 by (49-7)> has a more intensive 
tendency to be independent of » than in the case of a decaying turbulence. 
Therefore, Prandtl's mixing length -/ in (51.2) is considered to represent 
the mean free path of fluid parts more accurately, and it is sufficient to 
consider only the length *£' .     In the case of decaying turbulence, 
discussions based on the coefficient £ can be made because of the simple 
physical picture of the initial-period law, and the evaluated results are 
somewhat better than those depending upon *o    .  Thus, in the case of the 
nondecaying turbulence, the analysis due to Prandtl's mixing length seems 
to play the essential role of the transfer theory. 

In nondecaying turbulence, many vortices produced everywhere along 
the wall are carried with their growing regions around the filaments being 
kept dlmost parallel to the wall.  The mean free path *c     of fluid parts 
at an A-point depends on the vertical length of the region of every vortex 
passing near this point.  When R is taken as the mean value of the vertical 
lengths of vortices passing through the A-point, the value of *£'   or ^   is 
regarded to be proportional to R^, and the point of discussions is reduced 
to the distribution of R across the nondecaying turbulent flow. 

Along the wall surface, the scales of_vortices at their production 
instants are all regarded to be zero, and Ry = 0 holds there.  Namely, the 
condition 

,/- O at u, = 0 
(51.4) 

holds in all the cases of nondecaying turbulence.  If the thickness of a 
nondecaying turbulence is denoted by %    and the mean velocity is two- 
dimensional for simplicity, then many small vortices must exist near the 
wall and many large ones must exist near the boundary.  Taking into account 
the wall condition (51.4), the general expression of JC    is given by 

(51.5) 

Near the wall, (51.5) may be approximated by 

$ lf '        ' (51.6) 

which  is  the  assumption proposed  by  Prandtl   (reference  10)   in  the  case of  a 
nondecaying  turbulent   flow.     Near  the  free boundary of  the  turbulent   flow, 
large-scale  vortices  produced  far upstream  are predominant.      If   these   large 
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vortices are represented by a representative single kind of vortex rs _ 
mentioned on the intermittency factor  J^  in Section 50, the value of R 
for this flow is taken to be constant as (33.8) in the initial-period law. 
Namely, such an approximative expression, 

(51.7) 

is arrived at which is the same as the assumption of the wake flow near the 
free boundary of turbulent boundary layer proposed by Coles (reference 70). 

It rs too difficutl to evaluate the coefficients c, , c , ... of the 
series (51.5), and a general expression of jt/S    in 59« O  ■^J    1 shall be 
attempted.  Let an A-point have the coordinates ( £    ,   ¥    ) in a nonde- 
caying turbulent flow as shown in Figure 83, and let the production position 
be £.     of the representative vortices whose vertical scale R^ is equal 
to the mean value of those of the vortices passing near the A-point. 
According to the physical interpretations of the vortex chaos motion, 
assume that £  - ^j    is proportional to ^ .  On the other hand, scale 
length of a vortex motion increases proportionally to the square root of 
the time interval since the production instant.  And if the time interval 
since the production instant at ^f/ is taken to be approximately propor- 
tional to the distance £   -  JT/ by .a uniform mean-velocity profile, 
regardless of the position of  ^  , R^  is proportional to £  -   g .   , 
namely to  7?  •  Therefore, the general character. 

■4r-c,Vy, 
* ' (51.8) 

is obtained.  Near ^ "0 the assumption of a uniform mean-velocity may be 
doubtful, and near ^ «1 the proportional assumption between 7f     and £ - ß/ 
may lose meaning.  Thus, the formula (51.8) should be considered as the 
first approximative expression of j£    near the center of ^ — Ö ^^    1. 

It is difficult to evaluate experimentally the value of <^ according 
to the definition of (51.2).  However, when the turbulent shearing stress 

*£       is measured directly or indirectly with the mean-velocity profile, 
the value of *£    can be obtained by the formula (51.3).  Figures 84 and 85 
show examples of measurements of *£      in nondecaying turbulent flows. 

52.  EQUATION OF MOTION FOR THE FLOW OF SIMILARITIES PRESERVATION 

The Reynolds equations play a fundamental role in discussions of the 
mean velocity depending upon the transfer hypotheses.  In turbulent shear 
flow, the effect of molecular viscosity can be neglected compared with 
that of the turbulent viscosity.  A turbulent boundary layer is taken 
where the x- and y-axes are considered parallel and perpendicular, respec- 
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tively, to the flow,_with _the variation of mean velocity to the z-direction 
neglected.  When U, V and P are taken, respectively, as the x-, y-compo- 
nents of the mean velocity in the Icyer and the free-stream pressure out- 
side, the Reynolds equations take the following form of Prandtl's equation: 

= o. 
(52.1) 

The  similarity  character  of   the  Reynolds   stress  of   the  nondecaying 
turbulence   is  discussed   in   Sections   47   and   48.      In   this   section   the 
similarity  character   in   the  mean-velocity   distributions  will   be   surveyed. 
When  U0,   V0.,    S    ,   and   L  are   the   free-stream  velocity  outside   the   layer, 
a   representative   turbulent   intensity   in   a   section  of   the   layer,   the  boundary 
layer   thickness   and   a   standard   length   to   the   x-direction,   respectively,   then 
the mean  velocity   and   the   shearing  stress   are   generally   expressed   in   the 
series 

(52.2) 

The   similarity   flow   discussed   in   the   last   chapter   corresponds   to   the   cose 
where   g.,   g,    ...    are  made   zero   in   (52.2).      In   this   case,   if   f.,    f^,    ••• 
are   also   assumed   to   vanish,   the  Reynolds   equation   (52.1)   becomes 

(52.3) 

2 
with the Bernoulli equation P + ^ fU0 = constant utilized.  Primes on f. 
g, and U0, ^ denote differentiations, respectively, by 17    and £   . 
Since f and g are functions of only 77     , A.    and c' of the expressions, 

ITS'  "A' 
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53.  SINGULARITY CHARACTER NEAR THE WALL 

In this section, characteristics of flow in the vicinity of wall shall 
be surveyed.  When the expression (51.6) of *£      near the wall is substi- 
tuted into the formula (51.3) of momentum transfer, the Reynolds equation 
(52.3) for the boundary layer of the similarities preservation becomes 

o 

Z 

L 

When the nondimensional stream function F is given by 

F - Jfd?. 

(53.1) is further transformed into 

(53.1) 

(53.2) 

(53.3) 

At the limit of y-*0,  F tends to zero in (53.2).  If one neßlects, 
near ^ -0, the second and third terms in (53.3) by assuming (F'-'-D/F1' 
 > 0 at y?—>• 0, F is integrated into 

F'y£vy, 
(53.4) 

with  the condition  F1-!  at    ^   -1.     It    f*      of  the  function   (53.4)   is 
taken,   the   second  and   third  terms   in   (53.3)   are proved  conversely  to vanish 
at    f    »0.     Namely,   the expression   (53.4)   is  seen  to be   the  essential 
character of   flow near  the wall. 

When the  quantity 

(53.5) 

is introduced as a frictional velocity, (53.4) gives the following formula 
of the velocity profile: 
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(53.6) 

where c^   is   the  same  as   in   (51.6).     Expression   (53.6)   is  the  logarithmic 
i'ormula   of  the   velocity-defect   law proposed by  K^rm^fn   (reference  12).     It 
is   significant   that   the   logarithmic   expression  holds   ind-ependently of  the 
parameters     \,     and  c  of   the  pressure  gradient  and   the x-Reynolds  number. 
Expression   (53.6)   is   further   transformed   into 

c/j    ^ ^ C/ -^ -$- , 
(53.7) 

with a constant A, that is known as the wall law proposed by Prandtl 
(reference 20). 

Thus, the logarithmic law (53.6) or (53.7) has been taken to be the 
fundamental character of all kinds of the nondecaying turbulence near the 
wall.  Attention shall be given to the singularity of the solution at ^ 
=0.  By the character of logarithmic function, the mean velocity decreases 
rapidly as If    approaches zero.  But, it is not natural that the velocity 
diverges to the negative infinity at the wall.  It must be connected to a 
finite value of the mean velocity at the boundary of the viscous sublayer. 
The logarithmic formula In ^  comes from the formula (51.6) oi   J6    .     If 
(51.8) is used instead of (51.6), the above analyses lead to the formula 

(53.8) 

Although the velocity of (53.8) does not diverge at ^ «O, oÜ/dU has 
still a singularity there.  As seen in the analyses of the logarithmic law, 
the singularity is caused by the fact that the highest order term F''' in 
the ordinary differential equation (53.3) is multiplied by zero at *?  »0. 
This is the same for the case of (53.4).  Namely, it is the wall condition 
(51.4) that derives the singularity.  In a word, the idealized formula 
(51.4) of the physical interpretation of the production of new small 
vortices along the wall brings about the singularity character to the 
mean-velocity profile at the wall. 

In the general case of a laminar flow along a wall, the velocity 
increases linearly from zero at the wall and tends to a constant value of 
the free-stream.  In the case of turbulent flow, however, the mean velocity 
is always observed to increase rapidly and to tend gradually to the constant 
value.  The above-mentioned singularity at V    »0 may be supported by these 
well-known experimental facts.  Figure 86 shows experimental data in various 
cases of nondecaying turbulent flows, which may clarify the singularity 
character near the wall. 
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54.  CHANNEL OR PIPE FLOW 

A channel flow between parallel walls is taken.  fc  and L are taken 
as the radius and a standard length, respectively, to the x-direction, and 
suffix o Is made to denote the value at the center line, as shown in Figure 
87.  In a channel flow, S  is generally smaller than L, and the Reynolds 
equations are simplified into Prandtl's equation (52.1) with a constant 
pressure P  to the y-direction. 

o       ^ 

In a fully developed channel flow where effects of the inlet region 
are neglected, no free stream exists and the similarity condition of the 
flow can be adapted.  The continuity condition proves U0 to be constant 
to the x-direction.  Thus, since S is constant, the inertia terms in (52.1) 
become zero, and the equation for the similarities flow, as in (52.3) in 
the case of a turbulent boundary layer, is reduced to 

4feLf.#!>'. 
d3 

*- (54.1) 

As both  sides  are  functions respectively of    %    and   f)     only,   they must 
take a constant value.     By  integrating with a condition    T   «0 at  ?? «1, 
we get  the  expression 

1= tvr(l-i). 
(54.2) 

Figure 88 shows observed results of the shearing stress of channel flow, 
where the relation (54.2) is supported except in the vicinity of the 
viscous sublayer. 

When the assumptions (51.3) and (51.6) of the transfer theory are 
substituted Into (54.2), It becomes 

dv 
(54.3) 

In order   to  find  the fundamental   expression of  f,   expression   (54.3)   is 
integrated  by  taking only  the  first  term of the  series, 

to get  the  same  formula of   (53.6), 
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Ü-Uo _ _/. / 

(54.4) 

In   the  case  of   turbulent   flow   in  a  circular   pipe  with   a  constant 
radius       o     ,   the   inertia   terms   vanish   in   the Reynolds   equation  and   the 
logarithmic   formula   (54.4)   is   obtained  as   the   fundamental   expression  of 
the   velocity  profi1e.      Figure   89   shows  observed   results   in   the  case  of   a 
circular  pipe,   in which   the   linear   relation  of    ü/Ü-j '"-' log   ( U^^-//)   can 
be   found  more  clearly   than   in   the   case  of  a  boundary   layer  flow without   a 
pressure   gradient   shown   in  Figure   86. 

35.      TURBULENT  BOUNDARY   LAYER  ALONG A  FLAT   PLATE 

In   the   case  of  a  boundary   layer   flow,   ; ccuracy   of   the   logarithmic   law 
is   inadequate  ab   seen   in  Figure  86.     Namely,   the   inertia   force  of   flow  and 
the   pressure   gradient  of   free   stream remote   from   the  wall   cannot   be 
neglected.      In  this   section,   the   effect  of   inertia   force   shall  be   surveyed 
by   taking  a   simple  case  of   the   turbulent  boundary   layer   along  a   flat   plate. 
As   an   idealized   formulation,   two   similarities   of   the   shearing  stress   and 
the  mean   velocity   in   (52.2)   are   assumed.     As   the   transfer   hypotheses,   the 
approximative   expression   (51.8)   of   ^    near   the  center   in  a   section   shall 
be   introduced   to   the momentum-transfer   formula   (51.3).      Then,   the   Reynolds 
equation   (52.3)   becomes 

(55.1) 

with   the   nondimensional   stream  function   (53.2)   used,   where   the Reynolds- 
number   parameter  c   is   the  same   as   in   (53.1)   and   the   prime   on F denotes   the 
differentiation  by      ^     .     As   the  boundary  conditions   f=l   and df/c( ^ »0   at 

•77    =1   and    r    =0  at   ?7 =0   are   taken,   namely, 

AW, F =o of 

P ~ o. a* / 
(55.2) 

is  obtained. 

When F  is  expressed   in  the  series, 
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(55.3) 

with constant coefficient a. and substituted into the equation (55.1), such 
i 

a recurring formula, 

a^3 « {zcU+3i>U+2)UH)y'a,z+{(z*i'l)(2i+6)''}<iUA, 
* " (55.4) 

is   derived.      At   large  values   of   i,   the   first   term which  contains   the 
parameter   c   can be  neglected   in   (55.4).     Thus,   when  F'   and  F1'   of   (55.3) 
are   expressed  respectively   in     J^r« *x .^    an(^     ^ **"Ji £'*'     with  constant 
coefficients   a!   and   a!',   the   following conditions   are   obtained  at   the 
limit   of  i—^o«: 

*J+* = 
A,+3 

&*+* 4+0.S 

= 
^,+0.5 

*% <i+t 
a2+, 2+o.S   > &»')-      (55-5) 

o^. 
By Gauss' criterion of a power series, it is proved that^ ^£. O^S1 and .^0 
0.\,£'*'  are convergent  in 1 JE ^ ^ 0 and that .^0 ^^i, 5 "^  is convergent in 
1 >£S  0 but divergent at JT =1, because the difference between the 
denominator and the numerator is larger than unity except in the last 
expression in (55.5).  Namely, the mean velocity f takes a finite v?lue of 
the viscous sublayer at "^    =0, but df/d >f       always diverges, and the 
singularity character at the wall mentioned in Section 53 is mathematically 
proved for the case of a flat-plate boundary layer. 

By the boundary conditions (55.2) and the recurring formula (55.4), 
the coefficient a. of the series (55.3) can be calculated according to a 
parametric value o_f c.  Figure 90 shows the calculated results.  In the 
representation of U/U0 ^>-^ Tp   ,   the value of U(0)/Uo at the boundary of the 
viscous sublayer depends explicitly upon the parameter c.  This is supported 
by the experimental fact that even in the case of a flat-plate boundary 
layer, the value U/U near the wall varies with the Reynolds number of the 
flow, and the form parameter of the ratio of the momentum- and displacement- 
thickness Is not constant.  However, when üie velocity profiles are 
expressed in the relative form (U-Uo)/(Uo-U(0)) s>^?pf   the parameter c 
affects only Implicitly.  The effect of c in four evaluated cases can be 
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covered within a single curve as shown in Figure 90. 

At the linut of ^ ""*■ 0, the value of U -U(0) is seen by (53.6) or 
(53.8) to be proportional to U ^7  independently of c.  Thus, if 

(55.5) 

is  written   in   this   case,   f     can be  considered   to  vary  only wit'    ^7 , 
independently  of   the   Reynolds  number  or   of   the   roughness  of wa1^.      In 
Sections  53  and  54,   the  universal  character  of   (53.6)  or   (53.8)   is   inter- 
preted  near   the wall   of   a   boundary  layer   or   in  a   pipe  flow.     The   function 
f     can be  taken  as   an  extended   formula  of   the  velocity-defect   law  which o 
holds   in the whole  section of a  turbulent  boundary  layer  along a   flat 
plate. 

Figure  91   shows   a   comparison of   the  calculated  results  of   f with 
experimental  data.     Although  the  values  on  the  two axes must be   taken 
suitably  in  the  theoretical  curve,   the  functional   form of  f0is   preferable 
in   the whole  section  of   the   layer,   at   least when compared with   the   loga- 
rithmic  expression of   (53.6).     As mentioned   in Section  51,   the  expression 
(51.8)  of   *£   can be   represented  by  the   two   formulas  of   (51.6)   near   the 
wall   and   (51.7)  near   the   free-stream.     In order   to  improve   the   logarithmic 
law,   the  velocity  profiles  can be  represented  by  two kinds  of   the   inner  and 
outer  solutions  of   them as  has  been widely  attempted   (references 72   and   76). 
As   a   simple  expression,   however,   the  above  analysis based  upon   (51.8)  may 
be  preferable. 

56 SOLUTIONS OF SIMILARITIES FLOW OF TURBULENT BOUNDAL. LAYER 

The analysis of the similarities flow along a flat plate mentioned 
in the last section shall be extended into general cases of a pressure 
gradient.  When the transfer hypotheses (51.3) and (51.8) are introduced, 
the Reynolds equation (52.3) becomes 

f t-y> 
(56.1) 

which is the extended formula of (55.1) of no pressure gradient.  The 
boundary conditions are given by (55.2).  By solving (56.1), the effects 
of Che two parameters of the pressure gradient A of (52.4) and of the 
Reynolds number c of (53.1) shall be surveyed. 
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On  account  of   the   nonlinear   term  A   (F'2   "   D/F'1,   it   is   very   difficult 
to   solve  mathematically   the  differential   equation   (56.1).     A digital 
computer  was  necessary   to   get  numerical   solutions.      Namely,   expression 
(56.1)  was   first   integrated   step  by  step with   a   suitably  selected   value  of 
F(0).     The  conditions   F*(0)-l,   F,I(0)=0   in   (55.2)   and   an  appropriate   initial 
value  of  F(0)  was   searched   for,   which   ensured   that  F(1)«0.     The   integration 
was  made  by   16,000   steps   in     ^    =0^1,   and   the   computed   error  was   less 
than  0.0001   in   the   stream   function F.     Figure  92   shows   an  example   of   the 
solution.     As  shown  in  Figures   93  and   94,  J^he   Reynolds-number  parameter  has 
little  effect  on  the  relative  profile  of   (U-H   >/(Uo-U(0)W ^   for   each 
value  of    A   ,   as   in   the  case  of A.   =0,   altho it   appears   explicitly   in 
the   conventional   plot   of   U/U  's-/  ^ .     As   int      preted   in   the  case  of   A   =0, 
U     -   U(O)   is  proportional   to  U-jr   independently   of   A   and  c   near   the  wall. 
Thus,  when 

-£ 
(56.2) 

is  written,   velocity  profile   f^ is   seen   to  hold   in   the whole  section   inde- 
pendently  of  the  parameter   c   for  each  value  of__A   .      Figure  95   shows 
relative   forms  of   f^    expressed   in   (U-U0) / (U0-U (0)) ^s-' T? ,  where   the   curves 
are   obtained   from  the  computed   results   for  several   values  of  c,   with   U   (0)/ 
U0   in  about  0.3^^0.7   in   each   case  of   A   .      Namely,   in   the  expression   fj^yof 
a   generalized  velocity-defect   law,   the  effect   of   the  pressure  gradient   can 
be   surveyed without  being   affected  by   the  Reynolds  number. 

57.      TURBULENT BOUNDARY  LAYER WITH A SEPARATION 

By  computing  the  equation  of motion   (56.1)   of  the  similarities   flow, 
it  has   . een  found   that   as   the  value  of     -A   increases,   variations   duo   to 
the  parametric  value  of   c   become   large  even   in   the  relative  profile  of 
(U-Uo)/(Uo-U(0))'^-' "»^ .      At   a  value  of  - A    greater   than 0.25,   the   relative 
profiles   cannot  be  covered  with   a   single  curve.      Further,   for  some   values 
of X    and   c,   an  important   feature  of  alternation  of  the  sign  of    ^   U/   ä y 
at  y^O   from positive   to   negative   large   values  were   found.     Probably   this 
means   the   reverse  of  a   sign  of   the   infinity   in   the mathematical   solution, 
and   it  can naturally be   assumed   that   the reversing  point  of 

at -u, -  O 
(57.1) 

1 
is the point of separation of turbulent boundary layer, because du(0)/^y« 
- CO   implies the existence of a back flow near the wall.  Figure 96 shows 
computed examples of velocity profiles near the reversal point.  As in 
the theory of a laminar boundary layer, the separation condition (57.1) 
cannot be characterized strictly by the principal parameter A .  However, 
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Figure  7.     Probability Distribution of u-Fluctuation Around a Mean 
Velocity  in a Wind  Tunnel  Stream.      O   is   the  observed 
result  and  the curve  is   the Gaussian distribution function. 
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Figure   11.   Development  of Natural  Laminar Oscillation  in  the Laminar 
Boundary  Layer  Along  a  Flat  Plate   in  a  Low-Turbulence Wind 
Tunnel   (reference  6).     The distance  from  the wall   is  0.57 mm. 
and  the  timing mark  is   1/30  sec. 
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Figure  14.     Distributions of Mean Velocity   (O)   and  the   Intensity 
of  the u-Fluctuation   (#)   in  the  Immediate Vicinity 
of  a  Flat  Plate  in a  Turbulent  Boundary Layer   (refe- 
rence  22).     The velocity outside the boundary   layer 
is  5.30 m/sec.     Oscll.lograms  show the u-fluctuatlons 
where marks A,   B,   ...   indicate  the corresponding 
positions  in the diagrarc.     The   timing mark is  0.01 
sec. 
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Figure  IS.     Distributions  of  the Intensities of  the u-,  v- 
and w-Fluctuatlon In Turbulent Boundary Layer 
Along a Curved Wall   (reference 24).     Undisturbed 
velocity Ug is  160  ft/sec at the position x ■ 
17.5 ft.,  snd  the  separation occurs  near x • 
25.7 ft. 
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r. 

Loci of the Intersections of the Nearest 
Vortex Filaments and the Perpendiculars 
to Them From A-Polnt. X Is the A-polnt 
and O Is the Intersection. The curves 
are the loci of the Intersections whose 
parts of the full line are those in the 
nearest relation. Numbers 1, 2, 3, ... 
Indicate the connections of a continuous 
time progress. 

Figure 19. The Variables r, 0 and 4 
Which Determine an Orienta- 
tion of the V*-Vector. 
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Figure  20.   D*-Domaln in the  x*y*2*-Space.     The  full  lines   12,   23,   34, 
...   correspond to  the  loci of the  Intersections  shown In 
Figure 18.     The dotted  lines I'l,   22',   ...   are  the exces- 
sive parts Included  In   ^ t of  (11.3),  where  the points  1', 
2',   ...  are all on the boundary of D*-domaln. 

1 
Figur« 21. The V*- and V**-Vectors,  Respective- 

ly,  at the A- and A*-Points Which 
Are due to the Nearest Vortex Motion 
to the A-Polnt. 
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Figure 27. Spectrum Distributions in a Uniform Turbulent Wake 
Behind a Grid (reference 29).  Mesh length M of the 
grid is 3 in., and measurements are made at the _ 
position x ■ 27M with various mean velocities of U 
- 15 (O), 20 (X), 25 (A), 30 (-H, and 35 ( O) ft.0 

per sec. # indicates the value evaluated by the 
second formula of (19.5) from observed values of 
f(kr) in Figure 28 for this case of the flow. 

175 



.8 

/(M 

■ 
0 4 

Kr 
(ins.) 

Figure 28. Correlation Distribution in a Uniform 
Turbulent Wake Behind a Grid (reference 
29). # is an observed value and ($ 
indicates the value evaluated by the 
first formula of (19.5) from the 
observeH curve of F.(k ) in Figure 27. 

% 

Figure 29.    Functional Forms of the Similarity Correlation £o<(£)  In 
(20.14). 
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Figure  30. Decay of u-Intensity In a Uniform Turbulent Wake Behind a 
Grid (reference 32).  Various grids of mesh length M of 
0.635 cm. (X), 1.27 cm. C©)^ 2.54 cm. (-+-), and 5.08 cm.(0) 
are used in a mean velocity U0  of 12.86 m/sec. 

Figure 31. Distributions of an  Integral Scale in a Uniform Turbulent 
Wake  Behind a Grid   (references  33 and 34).     L is  defined 
from  the correlation g  in  the same manner as   (20.15). 
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Figure 32. Distribution of the Microscale X in a Uniform Turbulent 
Wake Behind a Grid.  In one series of experiments (reference 
35), three kinds of grids of mesh length M ■ 1.27 cm. (•), 
2.5 cm. (4*), and 5.08 cm. (O) are used with different mean 
velocity U0 ■ 12.86 m/sec (A-line) and 6.43 m/sec (B-line). 
In the other series (reference 36), a grid of M = 1.66 cm. 
is used with mean velocity U «11.30 m/sec (A) (C-line) and 
6.30 m/sec (o)  (D-line).   0 

» x 

Figure  33.     Orientation of Vortex Filament Behind a  Circular Cylinder 
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Figure  34. Distributions  of   u.-,   V- and W-Intensities  Across  the 
Turbulent Wake Behind  a Circular Cylinder   (reference 38) 
Measurements  are made with   the Reynolds  number of U d/V » 
1360  at different   positions of x/d ■  500   (#),   650   (-f), 
800   (O),  and  950   (X),  where d is  the diameter  of the 
cylinder. 
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Figure 35. 

I -I -2 

Distribution of u-Intenslty Across a Turbulent Wake Behind 
an Airfoil (reference 18). The state of flow is the same 
as in Figure 6. Measurements are made at x/c = 0.37 (O), 
1.38 (#), 2.32 (©), 3.23 O), 4.41 (©), and 5.13 (O). 
yg is defined by the half-width in the LL - distribution, 
and the center line 7^ » 0 is taken parallel to the mean 
flow  from  the trailing edge. 

-2-0 

Distribution of the g-Correlation in the Turbu- 
lent Wake Shown in Figure 35 (reference 18). •, 
(9 and © are in the same positions as in 
Figure :i5, and the broken line shows the u- 
distributlon. 
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Figure 37. Distribution of Turbulent Intensity snd Scale 
Along the Turbulent Wake Shown in Figure 35 
(reference 18). O and (fare observed values 
of u-intensity at V£ - 0 and 0.4. b is that 
of the half-width in the u-distribution. 

U 

Figure 38. Representation of Velocity Profile 
Behind a Circular Cylinder. 
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Figure 39. Distributions of Total Pressure Behind A Circular Cylinder. 
The diameter, d, is 1 cm.; the^resistance coefficient C Is 
1.32; and the Reynolds number U0d/^  is 2.38 x 10^.  The 
distance from the cylinder is denoted by e. 
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Figure 40.  Illustration of Typical Decaying Shear Turbulence. 
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Figure 41 Distribution of    tt /w Across the Turbulent Wake Shown  in 
Figure 34  (reference 38).    • (    + ,    0 ,  and X are the 
evaluated values from the dats in Figure 34 at the locations 
of x/d - 500,  650,  800,  and 950,  respectively. 
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Figure 42.    Measurement of the Mean and the Fluctuatlonal Velocity 
In the Turbulent Wake Behind a Circular Cylinder.    A, 
B,  C, D on the mean-velocity curve Indicate the respec- 
tive positions of the osclllogram.     The diameter is 1.5 
cm., the distance is 48.7 cm.,  and the undisturbed 
velocity   UQ    is 3.54 m/sec. 
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Figure 43.  Illustration of the P*- and F-functions at a Point in the 
Initial Period. 
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Distribution of the Intermittency Factor IT Across the 
Turbulent Wake Behind a Circular Cylinder. Measurements 
are made at positions of x/d « 500 (A), 650 (O), 800 
(D), and 950 (V) in ono series (reference 42)^ and in 
another series with various mean velocities of U ■ 
3.07 (O), 7.26 (#), 10.85 (O), 14.92 (C), and 19.96 
(®) m/sec. at a position of x/d ■ 33.7 behind a cylinder 
of the diameter d « 1.5 cm. (reference 37). The curve 
shows the Gaussian-integral formula (26.7) with Y and H, 
the position of the center and the dispersion of the 
formula, respectively. 
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Figure 45. Distribution of the Intermittency Factor T    Across a 
Turbulent Round Jet (reference 41).  Measurements are 
made at x/(2r ) - 20 (A), 37 (•), 37 (0), 46 (D), 
64.5 (V)» and 76 (O).  The curve shows the Gaussian- 
integral formula (26.7) with R the position of the 
center and r0 the radius of the nozzle. 
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Figure 46, 
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Figure 47. 

Distribution of the Nondimensional Dispersion 0" Along 
the Flow. O is the evaluated value from the data in 
the turbulent wake behind a circular cylinder referred 
to in Figure 44 (reference 42), and # is from the data 
of the turbulent round jet in Figure 45 (reference 39). 
d^ and 02 are diameters of the cylinder and nozzle, 
respectively. 

^-^ -O===c>====o 

i U.    * IB 20 
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Variation of the Nondimensional Dispersion (T* Versus 
the Mean Velocity ü0 in the Turbulent Wake Behind a 
Circular Cylinder (reference 37).  Data are taken from the 
same experiment as in the second series of the experiment 
in Figure 44. 
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Figure 48.     Diagonal  Sketch of a Nonuniform Shearless Turbulence. 
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Figure 49. 

A.    ^ 

Variation of  v/u.  Versus  the Contraction Ratio   X    of   (27.1) 
(reference  37).     Different marks  imply experimental  set- 
ups with different contraction ratios.     The straight line 
is deduced  from (27.3). 
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Figure 50. Calculated Curves of Relative Profiles of Cu (Y[) (solid 
line), CV

Z (chain line), and C^(y^) (broken line) of 
(25.2) Across an Idealized Synmetrlcal Shear Turbulence. 
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Figure 51. Distribution of Mean Velocity (small marks) and u-Intonslty 
Across a Half-Jet as Shown In Figure 40 (d). U and Uj^ 
are mean velocities at upper and lower parts ofuthe free 
stream.  O, • and d are observed values at x ■ 25.0, 
40.9, and 56.7 cm. from the step along the x-axls, and the 
undisturbed velocity U0 is 18.7 m/sec. The two curves 
are calculated curves In Figure 50 and from equation 
(24.16). 
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Figure 54.     Representation of Velocities  at Two Points 
Across  a  Shear   Flow. 

 > 

Figure 55. Profiles of an Intermlttency Factor T and 
Velocity v Across a Decaying Turbulence. 
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Figure 56. 

JL 

Distribution of Mean Velocity Across the Turbulent Wake 
Behind a Circular Cylinder.    The full and broken lines 
show the solutions respectively of (34.13)  and  (34.9). 
O, (D,9» and # are observed values, respectively, at 

x/d - 80, 100, 166.5, and 208 (reference 39). YR is the 
width of the wake. 
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Figure 57. Diagonal  Sketch of the Profiles of Different Values 
of £   Across the Wake Behind an Asymmetric Airfoil. 
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Figure 58. Distribution of Mean Velocity Across a Turbulent Jet from 

a Two-Dimensional Silt.  The full and broken lines show the 
respective solutions of (35.4) and (35.3). O, 3, 0,0 and 
# are observed values at x - 20, 35, 50, 60, and 75 cm. 
from the silt (reference 52). 
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Figure 59. Distribution of Mean Velocity Across a Turbulent Jet From 
a Round Nossle. The full and brc^en lines show the respec- 
tive solutions of (35.7) and (35.6). •, 9, and O «re observe« 
values at x - 20, 26» and 45 cm. from the nozzle (reference 
47). 
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Figure 61.     General View of the  Polsson Process of P* of  (37.3) 

n 
Variation of the Value of ^ Very Near the 
Production Instant of a Vortex Motion. 
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Figure 63.  Decay of u-Intensity Along Uniform Decaying Turbulence 
(reference 54). The thick line is the evaluated curve 
from (38.7). -*-, V are the observed values behind a 
circular cylinder referred to in Figure 53 as d and €> 
respectively.  Others are the observed values along the 
turbulent wake behind a grid with the following conditions: 

1   o 

U0(m/sec) M (cm) d   (cm) 

1 
9.06 0.16 0.03 

e 12.96 0.16 0.03 j— (reference 55) 
<D 6.20 0.16 0.03 

1    0 12.86 0.64 — -|    (reference 32) 
V 11.30 1.68 —         1 l— (reference 36) 
▼ — -- J   (reference 56) 
v 19.68 0.14 0.02 "1                                                                       | 

▼ 15.00 0.14 0.02          1 U(reference 33) 
V 9.61 0.14 0.02 
^ 10.00 1.00 ,       0.20 

J- (reference 34) A 10.00 5.00 1       ^^ 

U , M,and d are the undisturbed velocity, mesh length 
and rod diameter of the grid or cylinder, respectively. 
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Figure 64.  Variation of the f-Correlation in Isotropie Turbulence. 
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Figure 65.  Variation of the g-Correlation in Isotropie Turbulenee. 
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Figure 66, 

o z        j<_     4 6 
LO 

Distribution of the g-Correlation in Isotropie Turbu- 
lence (reference 54).  The dotted, full and chain 
lines indicate the curves of t* ■ 0.4, 1.0, 1.6, 
respectively, in Figure 65.  The following symbols 
correspond to the observed values in the turbulent 
wake behind a grid as proposed by different authors 
under the following conditions: 

o 

U0 (m/sec) M(cm) d (cm) x/M 
«M* 

10-5 

10.00 1.00 0.2 20 
— 

© 10.00 1.00 0.2 60 
e 10.00 1.00 0.2 120 — (reference 34) 
(D 10.00 1.00 0.2 200 
o 10.00 1.00 0.2 350 
0 10.00 1.00 0.2 550 
A »<*«»__ 10.16 ... ... 3.0' 
A 10.16 ... ... 1.0 —(reference 36) 
^ 10.16   ... 0.4 
V 20.00 14.00 0.2 10 - 

0 20.00 14.00 0.2 30 
0 20.00 14.00 0.2 50 (reference 33) o 20.00 14.00 0.2 70 
a ... 37 ■■ 

B ... 231 (reference 57) 
B 15.24   — 1.3 = 
s   50 3.2 J (reference 58) 
QD parallel 2.54   60 
B cylinder 2.54   60 
9 square 5.08   30 
e mesh 2.54 35 (reference 59) 
■ slot 1.90 ... 47 
•   1.90   47 - 
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Figure 67. 

0.03 

Variation of the Triple Correlation h in 
Isotropie Turbulence. 
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Figure 68. Growing of  the h-Correlation Observed Along  the  Turbulent 
Wake Behind  a  Grid   (reference  60).      X,   •,   O ,   H-,   and 4 
are observed  values,  respectively,   at x/M ■  20,   30,   60,   90, 
and  120, where RJJ - 5300. 
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Figure 69.    Distribution of the f-  and h-Correlatlons  in Isotropie 
Turbulence Plotted Versus   the  Same  Abscissa k/L.   (reference 
54).     The dotted,  full,   and  chain  lines Indicate  the 
respective curves of t* ■  0.4,   1.0,   and 1.6 in Figures 64 
and  67.     The  following  symbols  correspond  to  the  observed 
values  of  f and h at the  same   time  in the  turbulent wake 
behind  a  grid under  the  following conditions: 

o 

x/M RMIO"5 

30 0.53 
— 

0 30 2.12 i—   (reference 59) 
0 30 4.24 
e 30 11.50 
a 20 0.53 " 

a 30 0.53 
m 60 0.53   (reference 60) 
B 90 0.53 
A 120 0.53 „ 

  R - 56.2 _ —  (reference 61) 
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Figure 71.  Comparison of the 2/3-Power Law 
(dotted lines) of (44.9) With 
the Curves of I-f Shown in 
Figure 64. 

Figure 72.  Local Characteristics of the Spectrum Function F(k) 
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Figure 73. Observed Results of the One-Dimensional 
Spectrum in the Turbulent Wake Behind a 
Grid (reference 66) and the Curves of 
(45.4) and (45.5).  Measurements are 
made at x/M - 20 (Q), 40 (#), 60 (X), 
80 (-H) and 100 (A). 
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Figure 74. Distribution of Function I for Two Points in Turbulent 
Boundary Layer Along a Flat Plate. 

i 

U (m/sec) 

Figure  75.    Distribution of u-Intensity Across  Turbulent Boundary 
Layer Along  a Flat  Plate   (reference  18).   Transition 
is   accomplished by  spreading a wire  on  the  plate across 
the  flow of  a mean velocity U0 "   10.13 m/s.    Measure- 
ments  were made  at  x = 49.3 cm.     (0)>   76.5 cm.     (•)> 
102.5 cm.     O),   121.2 cm.     (f)),   and 141.5 cm.     (Q) 
from the wire. 
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Figure 77.  Distributions of u-Intensity (below) Across a Turbulent 
Boundary Layer With a Negative Constant Pressure Gradient 
(above) Along the Flow (reference 68).  Several marks 
indicate the position of measurements, and suffix s means 
the value of thd free-stream at the origin of the x-axis. 
U. 9.6 m/sec 
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Figure  78. Distribution of u-Intensity (below) Across a  Turbulent 
Boundary Layer With a Positive Constant Pressure Gradient 
(above) Along the Flow (reference 68).  Several marks 
indicate the position of measurements, and suffix s means 
jthe value of the free-stream at the origin of the x-axis. 
U. 21.8 m/sec. 
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Figure 79.  Deviation From the Similar Profiles of u-Intensity in the 
Case of Turbulent Boundary Layer in Figure 78.  Dotted 
line shows the mean curve of the profile (below) in Figure 
78; and O , D correspond to the position in the pressure 
curve (above). 

Figure  80. Distributions of U/ZuL2 + V 2+ W2,    V/ >/a2+  \J2+ W2, 
tLV/   (U,2+ V 2+ W2)   and IX/vV  Across Nondecaying Turbulent 
Flows.     Full  and broken  lines are evaluated  from experi- 
mental  results  respectively  in turbulent boundary  layer 
along a  flat plate   (reference 69)  and  in turbulent  flow 
in  a circular pipe of the  radius   O,    (reference 67). 
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Figure 81.     Distribution of  the Function P* at  the Two  Points  A and  A' 
Near >9   = 1  and 0,   Respectively,   in Turbulent  Boundary Layer, 

1.0 

0.8 

0.6 

0.k 

0.2 

0.0 J J^bat 
-2, -1 

-Y 
*$ 

Figure  82. Distribution of  the  Intermittency Factor    f     Across Turbulent 
Boundary Layer Along a  Flat  Plate   (reference 41).     Measure- 
ments  are made at positions  of x =  0  in.      (O)»   24.75 in.   (A)> 
64   in.   (o),   86.25  in.    (V)  and  102_in.   (•).     The  curve  shows 
the Gaussian-integral   formula with Y and  H respectively of  the 
position of  the center  and  the dispersion of  the  formula. 
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Figure 83.     Distribution of P*^,   and  the Location of   ij ,   for an A-point 
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Figure 84.  Distribution of the Mixing Length in a Pipe Flow (refer- 
ence 71).  Measurements are made with various Reynolds 
numbers Ma/Y     of 105 x 103 (O), 396 x 103 (#), 1110 
x 103 (©), 1959 x 103 (O), and 3240 x 103 (0).  a is 
the radius of the pipe.  Thick and thin lines represent, 
respectively, the formulas (51.8) and (51.6). 
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Figure 85. Distribution of the Mixing Length in Turbulent Boundary Layer 
Along a Flat Plate (reference 72).  Measurements are made with 
two kinds of the Reynolds number.  The curve represents the 
formula (51.8), where the origin is taken at V]^ =0.04 which 
is considered to be boundary of the viscous sublayer. 
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Figure 87.  Profile of Mean Velocity Across a Channel. 
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Distributions of Turbulent Shearing Stress Across a Cir- 
cular Pipe (reference 76). Measurements are made of the 
Reynolds  number  of  12,300   (O),   30,800   (3),   and  61,600   (( 
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and \   = -0.05 (broken line) In Figure 95 With Experimental 
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Figure  100, Comparison of   the Computed  Relative  Profiles  of   ^  ■  -0.15 
(full   line)   and    A   =  -0.20   (broken  line)   in Figure   95 With 
Observed Mean Velocity of  the  Turbulent Boundary Layer 
With   Positive  Pressure  Gradients.     Measurements  are made 
by Wieghardt-Tillman   (O)  with  experimental  value of 
X     «  -0.16   (reference  73)   and  by  Sandborn-Slogar   (•) 

with   A  »  -0.17   (reference  78). 

Figure 101. Comparison of  a Computed Profile of A » -0.30 and c « 
0.35 Near the Critical  Condition    ^ Ü/dy - 0   (cf.   Figure 
96)  With Observed    Mean Velocity Near the  Point  of  Turbu- 
lent Separation.    Measurements are made by Wieghardt- 
Tillmann  (0,(1) with  experimental  values of X ■   -0.27 
and  -0.26 respectively  (reference 79), by Sandborn-Slogar 
(•) with X  - -0.28  (reference 78),  and by Schubauer- 
Klevanoff ( D) with X -  -0.28   (reference 24). 
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discussions are developed by dividing the cases into two fundamental 
groups of wake or jet flow in Chapters Four through Seven and of boundary 
layer or pipe flow in Chapters Eight and Nine. 
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